

Hawkes Bay Regional Council

TANK Catchments

Lowland streams augmentation pre-feasibility assessment of capital and operating expenditure for the Tutaekuri, Ahurri, Ngaruroro, Karamu catchments

12 February 2018

Contributing Authors:

Mark Everest

Farm Management Consultant

Table of Contents

1.		Introduction	3
2.		Summary	3
	2.1.	Capital Expenditure	3
	2.2.	Operating Expenditure	4
	2.3.	Considerations	5
3.		Methodology	5
	3.1.	Capital Expenditure	5
	3.2.	Operating Expenditure	6
4.		Results	7
	4.1.	Awanui	7
	4.2.	Irongate	8
	4.3.	Karamu	9
	4.4.	Karewarewa1	1
	4.5.	Louisa1	2
	4.6.	Mangateretere	13
	4.7.	Raupare1	4

1. Introduction

This report has been prepared for Hawkes Bay Regional Council to assess the potential capital and operating expenditure required to augment pre-determined lowland streams as set by Grant Pechey, Monique Benson and Simon Harper for the TANK (Tutaekuri, Ahurri, Ngaruroro, Karamu) catchments.

The streams identified as requiring augmentation are: Irongate; Karamu; Karewera; Mangateretere; Ruapare, Awanui and Louisa.

This report is a desktop analysis from information provided by Hawkes Bay Regional Council and is intended to be a preliminary assessment of the economic requirements of undertaking stream augmentation.

The assessment includes capital expenditure estimates. It also includes an assessment for the time period 2015-2032 of annual maintenance and depreciation estimates and annual running charges estimates for the average and extreme seasons for each of the streams.

2. Summary

2.1. Capital Expenditure

Capital expenditure varied by stream but averaging approximately \$285,000 per stream, (approximately \$225,000 per augmentation site). The Karamu being the most expensive with the highest flow, but also three proposed augmentation sites (identified further on in this report as K1, K2, K3). If it were possible to have all the augmentation at one site the capital cost would halve as the amount of infrastructure required would be significantly less.

To get the flow range to an acceptable level, it was required at each site to have between two and three bores and pumps (the exception being Louisa with only one bore and pump). I have modelled the use pumps fitted with variable speed drives (VSD's), which allow the pump to speed up or slow down in order to pump the desired amount of water. VSD's, however, are only efficient to approximately 50% of pumping volume (ie they operate well between 50% and 100% of potential flow rate). As VSD's only operate well within a finite range, to have a wide operating range of augmentation pumping volumes (say between 15 and 120 litres per second), a range of different capacity pumps was required at each augmentation site.

It is possible to make the install cheaper by having only one well per augmentation site, with one pump fitted with a VSD, and an actuated gate or butterfly valve. This system would see the pump operate between say 50% and 100% of potential pump capacity, and under the 50% flow rate, the actuated valve would begin to close to "choke" back the pump to reduce flow rate further. Choking the pump is energy inefficient and only practical to approximately 25% of potential pump capacity, as once flow rates get too low, pumps can overheat as there is not enough water flow to keep them cool. This "choking" system would not likely meet irrigation NZ's design code of practice.

Variable speed drives are more expensive than soft starters to install, but they save energy over the longer term.

Some of the sites would be able to be operated with artesian water in some seasons, however the longer term analysis suggests that from time to time the bores would not be artesian and would require pumping of the water to operate. I expect you would need the pumps as the seasons when you would most want to augment streams would likely be the seasons when pump systems would be required to operate the augmentation well.

I expect that total capital expenditure will reach approximately \$2,000,000. This capital cost would provide the facilities to pump a peak 775 litres per second from all of the sites combined to the seven streams augmented. This is outlined in table 1 below.

Table 1: Estimation	ated Capital	Expenditure	Required
---------------------	--------------	-------------	----------

	CAPITAL EXPENDITURE REQUIRED										
Awanui	Awanui Irongate Karamu Karewarewa Mangateretere Louisa Raupare TOTAL										
\$195,516	\$190,600	\$842,131	\$226,198	\$250,984	\$99 <i>,</i> 056	\$192,090	\$1,996,575				

2.2. Operating Expenditure

Operating expenditure is made up of three key parts: electricity; depreciation; and maintenance. The depreciation is non-cash but still reflected in this analysis, the maintenance is required annually and the electricity is variable.

Operating expenditure is made up of three key parts: electricity; depreciation; and maintenance. The depreciation is non-cash but still reflected in this analysis as in time there will be a cost required to replace the infrastructure installed today. The maintenance is required annually irrespective of how many hours of use the pump and bore do, and therefore this cost is the same across all seasons. The electricity is variable made up by: fixed lines charges; and additional energy use charges paid for when pumps are used.

Because of the fixed costs of depreciation and maintenance (approximately \$104,000), in a year where a low level of augmentation is required ("min" row in table 2), there is still a significant operating expenditure required. The annual charges increase as more electricity is required to run the pumps. In the years when a high level of augmentation is required ("max" row in table 2), up to \$142,000 more than maintenance will need to be provisioned to operate the augmentation scheme. An outline of how operating charges may vary between years with high, mean and low levels of stream augmentation requirement is shown in table 2 below.

	ANNUAL OPERATING EXPENDITURE											
	Awanui	Irongate	Karamu	Karewarewa	Mangateretere	Louisa	Raupare	TOTAL				
Max	\$15,470	\$20,482	\$96,829	\$51,212	\$39,776	\$7,708	\$15,260	\$246,738				
Min	\$11,596	\$7 <i>,</i> 544	\$44,053	\$13,934	\$16,905	\$6,810	\$10,123	\$110,964				
Average	erage \$12,649 \$11,333 \$60,029 \$25,875 \$28,516 \$6,880 \$10,554 \$155,837											

 Table 2: Expected Annual Operating Expenditure Ranges

2.3. Considerations

I recommend looking closely at the feasibility of augmenting the Karamu stream at one (or even two) point(s) rather than three, as this will save significant capital cost and ongoing maintenance. As the three augmentation sites all require a staged increase in augmentation flow, a total of 9 bores are required. If these bores were consolidated to a common cluster, this could be reduced to 4 bores and pumps, saving considerably on capital cost and maintenance.

All of these augmentation sites have assumed that there is sufficient lines (electricity) capacity to run the required pumps. No provision has been made for lines upgrades if required.

There has been no provision for cost of land acquisition/compensation or cost of establishing legal easements if required.

3. Methodology

3.1. Capital Expenditure

Pump size was first calculated. This is based on the operational range of flows required to augment the streams and expected total head pressure (suction required + pressure head to deliver to the stream head 100m from the bore site).

In the instance of most streams, there are three bores and three pumps required to give HBRC the ability to accurately augment the streams to the required level. Multiple pumps and wells have been assumed as it is difficult to get two pump intakes down one well and multiple pumps on one intake manifold often cavitate. The pumps are expected to be a combination of soft start and variable speed drive pumps controlled by a programmable logic controller (PLC).

The cost of the bore was established by multiplying the bore depth (provided by HBRC) by a digging rate (derived from HBRC provided schedule of drilling quantities and Lincoln University Financial Budget Manual). The depth has been estimated using the average of surrounding wells as provided by HBRC from the "wellstor' data.

The cost of the pump station was then established using internal MRB database of install costs accompanied by Lincoln University Financial Budget Manual and discussions with irrigation plant suppliers.

Electricity supply is assumed to be 300 metres to the first site and 100m more to each subsequent site, with a multiple pump site utilising one transformer connection.

3.2. Operating Expenditure

Calculated as follows:

Energy:

- Calculated based on kilowatt hours used multiplied by known rate (as supplied by HBRC from a local Hawkes Bay farmer).
- Assuming 0.5bar of pressure loss in headworks, 0.1bar of pressure loss in PVC, 1.0bar pressure at delivery to stream head, system losses through suction and manifolds of 0.2bar.

Depreciation:

- Pump cost depreciated over 10 years.
- Switch gear depreciated over 25 years.
- Bore cost depreciated 50 years.
- Headworks and depreciated over 25 years.

Maintenance:

- Bore re-development every 10 years.
- Flow meter calibration every 3 years.
- Annual check and service fee by irrigation company.
- Data telemetry.
- Pump and switch gear 'maintenance' calculated at 2.5% of capital cost annually. Typically this is a large expense (for example a pump failure), that occurs ahead of scheduled plant replacement.

4. Results

4.1. Awanui

SUMMAR	Y - Awanui					
pump capa	acity require	ed				
	Peak powe	er required	25	kw		
	Max flow i	rate .	110	lps		
	Min well w	ater level	0.7	mbgl		
Product	ion Year	Powe	er use			
2015	-2016	6,652	KwH			
2016	-2017	7,030	KwH			
2017	-2018	3,158	KwH			
2018	-2019	14,115	KwH			
2019	-2020	6,132	KwH			
2020	-2021	964	KwH			
2021	-2022	4,058	KwH			
2022	-2023	6,218	KwH			
2023	-2024	1,360	KwH			
2024	-2025	4,472	KwH			
2025	-2026	6,659	KwH			
2026	-2027	3,738	KwH			
2027	-2028	1,089	KwH			
2028	-2029	1,073	KwH			
2029	-2030	4,304	KwH			
2030	-2031	5,102	KwH			
2031	-2032	8,620	KwH			
CAPEX - Ir	nfrastructu	re Capital				
			Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	h	31m	31m	-	-
	Screen Ler	ngth	5m	5m	-	-
	Bore Drillin	ng	\$18,631	\$18,631	-	-
	Bore Deve	lopment	\$3,576	\$3,576	-	-
	Bore Scree	ening	\$6,229	\$6,229	-	-
	Consent a	nd Mgmt	\$12,612	\$12,612	-	-
	Pump Capa	acity	80lps	30lps	-	-
	Pump Size		21kw	8kw	-	-
	Pump Cost	t	\$10,809	\$4,054	-	-
	Switchgea	r Type	VSD	VSD	-	-
	Switchgea	r Cost	\$10,535	\$3,951	-	-
	Headwork	s Cost	\$7,500	\$7,500	-	-
	Flowmeter	r Cost	\$2,600	\$2,600	-	-
	Flowmeter	r Calibratio	\$480	\$480	-	-
	Pump Shec	1	\$3,800	\$3,800	-	-
	Undergrou	Ind Pipe	\$5,000	\$5,000	-	-
	Undergrou	ind Power	\$15,000	\$5,000	-	-
	Lines Conr	iection		\$15,	000	
	Ancillary C			\$10, ¢105	311	
	TUTAL CA	reλ		\$192	010,	
	nual Casta					
OPEX - An	nual Costs			Max	N Alim	A
	Doprociati	on Dumne		IVIdX	1VIII1	Average
	Depreciati	on Switch	goar		\$1,480 \$570	
	Depreciation - Switch				۶) ۲۵ ۲۵	
	Depreciati				\$1,042	
	Depreciation - Headw				5005 \$220	
	Tolomotry	Sonvico	1		\$520	
	Bore re de	velopmont			¢715	
	Dump Mai	ntonanco			\$1 767	
	Pump Soc	ice			\$1,203	
	KwH ucod			14 115	964	4 925
	KwH cost			\$4,115	\$342	\$1 296
	TOTAL OP	FX		\$15.470	\$11 596	\$12 649
				,+,U	000,114	7-2,043

4.2. Irongate

UMMAR	Y - Irongat	e				
ump capa	acity requir	ed				
	Peak pow	er required	24	kw		
	Max flow	rate	75	lps		
	Min well v	vater level	6.7	mbgl		
Product	ion Year	Powe	er use			
2015	-2016	2,380	KwH			
2016	-2017	21,194	KwH			
2017	-2018	17,191	KwH			
2018	-2019	0	KwH			
2019	-2020	16,569	KwH			
2020	-2021	128	KwH			
2021	-2022	18,069	KwH			
2022	-2023	5,826	KwH			
2023	-2024	18,961	KwH			
2024	-2025	18,638	KwH			
2025	-2026	21,989	KwH			
2026	-2027	579	KwH			
2027	-2028	408	KwH			
2028	-2029	0	KwH			
2029	-2030	45,620	KwH			
2030	-2031	19,775	KwH			
2031	-2032	28,734	KwH			
APEX - Ir	frastructu	re Capital				
		· ·	Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	h	27m	27m	-	-
	Screen Lei	ngth	5m	5m	-	-
	Bore Drilli	ng	\$16.227	\$16.227	-	-
	Bore Deve	lopment	\$3,576	\$3,576	-	-
	Bore Scree	ening	\$6,229	\$6,229	-	-
	Consent a	nd Mgmt	\$12,612	\$12,612	-	-
	Pump Cap	acity	50lps	30lps	-	-
	Pump Size		18kw	11kw	-	-
	Pump Cos	t	\$9,258	\$5,555	-	-
	Switchgea	r Type	VSD	VSD	-	-
	Switchgea	r Cost	\$9,024	\$5,414	-	-
	Headwork	s Cost	\$7,500	\$7,500	-	-
	Flowmete	r Cost	\$2,600	\$2,600	-	-
	Flowmete	r Calibratio	\$480	\$480	-	-
	Pump She	d	\$3,800	\$3,800	-	-
	Undergrou	und Pipe	\$5,000	\$5,000	-	-
	Undergrou	und Power	\$15,000	\$5,000	-	-
	Lines Con	nection		\$15,0	00	
	Ancillary C	Costs		\$10,3	01	
	TOTAL CAPEX			\$190,	600	
PEX - An	nual Costs					
				Max	Min	Average
	Depreciati	on - Pumps			\$555	
Depreciation - Switch		gear		\$217		
	Depreciati	on - Bore	Ī		\$773	
	Depreciation - Headw				\$404	
	Flowmeter calibration		n		\$160	
					\$1,440	
Bore re-development					\$358	
	Pump Mai	ntenance			\$539	
	Pump Serv	vice			\$3,000	
	KwH used			45,620	0	13.886
	KwH cost			\$13.037	\$99	\$3.888
	TOTAL OP	EX		\$20.482	\$7,544	\$11.333
					, ,	

4.3. Karamu

SUMMAR	Y - Karamu	К1					SUMMAR	Y - Karamu	К2				
pump capa	acity require	-d					pump cap	acity requir	ed				
panip cape	Peak nowe	er required	36	kw			P. P. P.	Peak powe	er required	36	kw		
	Max flow	rato	11/	Inc				Max flow	rate	114	Ins		
	Minwolly	ater lovel	114	mbal				Min well w	ater level	43	mhal		
	will well w	alei ievei	4.1	mbgi				with weir w		7.5	шові		
Product	ion Voor	Power					Product	ion Vear	Powe	er lise			
2015	2016	10 900					2015	-2016	10 936	Kw/H			
2015	-2010	10,099					2015	2010	20,550				
2010	-2017	20,237					2010	2017	20,304				
2017	-2010	24,410					2017	2010	24,433				
2018	-2019	0	KWH				2010	2019	27 495				
2019	-2020	27,400	KWH				2019	-2020	27,405				
2020	-2021	253	KWH				2020	-2021	253	KWH			
2021	-2022	23,321	KWH				2021	-2022	23,395	KWH			
2022	-2023	9,487	KWH				2022	-2023	9,502	KWH			
2023	-2024	22,335	KWH				2023	-2024	22,424	KWH			
2024	-2025	22,024	KwH				2024	-2025	22,097	KWH			
2025	-2026	27,147	KwH				2025	-2026	27,242	KWH			
2026	-2027	2,826	KwH				2026	-2027	2,830	KWH			
2027	-2028	5,133	KwH				2027	-2028	5,139	KwH			
2028	-2029	4,252	KwH				2028	-2029	4,280	KwH			
2029	-2030	62,439	KwH				2029	-2030	62,685	KwH			
2030	-2031	22,281	KwH				2030	-2031	22,368	KwH			
2031	-2032	39,183	KwH				2031	-2032	39,234	KwH			
CAPEX - Ir	nfrastructu	re Capital					CAPEX - II	nfrastructu	re Capital				
			Bore 1	Bore 2	Bore 3	Bore 4				Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	h	32m	32m	32m	-		Bore Dept	h	29m	29m	29m	-
	Screen Ler	ngth	7m	7m	7m	-		Screen Ler	ngth	7m	7m	7m	-
	Bore Drillin	ng	\$19,232	\$19,232	\$19,232	-		Bore Drilli	ng	\$17,429	\$17,429	\$17,429	-
	Bore Deve	lopment	\$3,576	\$3,576	\$3,576	-		Bore Deve	lopment	\$3,576	\$3,576	\$3,576	-
	Bore Scree	ening	\$8,363	\$8,363	\$8,363	-		Bore Scree	ening	\$8,363	\$8,363	\$8,363	-
	Consent a	nd Mgmt	\$12,612	\$12,612	\$12,612	-		Consent a	nd Mgmt	\$12,612	\$12,612	\$12,612	-
	Pump Cap	acity	30lps	40lps	50lps	-		Pump Cap	acity	30lps	40lps	50lps	-
	Pump Size		11kw	15kw	19kw	-		Pump Size		12kw	15kw	19kw	-
	Pump Cost		\$5.895	\$7.861	\$9.826	-		Pump Cost		\$5,941	\$7,921	\$9,901	-
	Switchgea	r Type	VSD	VSD	Soft st	-		Switchgea	r Type	VSD	VSD	Soft st	-
	Switchgea	r Cost	\$5,746	\$7,661	\$7,087	-		Switchgea	r Cost	\$5,790	\$7,720	\$7.141	-
	Headwork	s Cost	\$7,500	\$7,500	\$7,500	-		Headwork	s Cost	\$7,500	\$7,500	\$7,500	-
	Flowmeter	Cost	\$2,600	\$2,600	\$2,600	-		Flowmete	Cost	\$2,600	\$2,600	\$2,600	-
	Flowmeter	r Calibratio	\$480	\$480	\$480	-		Flowmete	Calibratio	\$480	\$480	\$480	_
	Pump Shor	4	\$3.800	\$3.800	\$3 801			Pump Sher	4	\$3.800	\$3.800	\$3.801	_
	Lindorgrou	und Dino	\$5,800	\$5,800 ¢E 000	\$5,801	-		Lindorgrou	und Dino	\$5,000	\$5,800	\$5,001	
	Undergrou	ind Power	\$3,000	\$5,000 ¢E 000	\$3,000 ¢E 000	-		Undorgrou	Ind Power	\$3,000	\$5,000	\$5,000	-
	Lines Conr	ind Power	\$15,000	\$5,000 ¢1E	\$5,000 000	-		Linos Conr		\$15,000	\$5,000 ¢15	\$5,000 000	-
	Lines Conr	ection		\$15, ¢14	222			Aneillen C			¢14	255	
	Anchiary C			ې14, دەرخ	707						, کر چ دەدە	255	
	TUTAL CAR	257		Ş287	,/8/			TUTALCA	°EA		Ş202	,750	
	1.0.1						ODEV A						
OPEX - An	nual Costs				. <i>a</i> :	•	OPEX - Ar	inual Costs				• •	•
	.			Max	Min	Average		- · · ·	_		Max	Min	Average
	Depreciati	on - Pumps			\$2,358			Depreciati	on - Pumps			\$2,376	
	Depreciati	on - Switch	igear		\$820			Depreciati	on - Switch	gear		\$826	
	Depreciati	on - Bore			\$2,627			Depreciati	on - Bore			\$2,519	
	Depreciati	on - Headw	vorks		\$808		Depreciation - Headw		/orks		\$808		
	Flowmeter	r calibratio	n		\$480		Flowmeter calibratio		n		\$480		
	Telemetry	Service			\$1,440		Telemetry Service		Service			\$1,440	
	Bore re-de	velopment			\$1,073			Bore re-de	velopment			\$1,073	
	Pump Maii	ntenance			\$1,895			Pump Mai	ntenance			\$1,904	
	Pump Serv	ice			\$3,000			Pump Serv	ice			\$3,000	
	KwH used			62,439	0	19,508		KwH used			62,685	0	19,569
	KwH cost			\$17,902	\$315	\$5,637		KwH cost			\$17,975	\$317	\$5,655
	TOTAL OP	EX		\$32,403	\$14,816	\$20,138		TOTAL OP	EX		\$32,400	\$14,743	\$20,081

SUMMARY - Karamu K3						
pump capa	city require	ed				
	Peak powe	er required	36	kw		
	Max flow i	ate	114	lps		
	Min well w	ater level	4.2	mbgl		
Product	ion Year	Powe	er use			
2015	-2016	10,894	KwH			
2016	-2017	28,226	KwH			
2017	-2018	24,408	KwH			
2018	-2019	0	KwH			
2019	-2020	27,390	KwH			
2020	-2021	252	KwH			
2021	-2022	23,311	KwH			
2022	-2023	9,483	KwH			
2023	-2024	22,295	KwH			
2024	-2025	21,963	KwH			
2025	-2026	27,138	KwH			
2026	-2027	2,825	KwH			
2027	-2028	5,131	KwH			
2028	-2029	4,250	KwH			
2029	-2030	62,236	KwH			
2030	-2031	22,272	KwH			
2031	-2032	39,169	KwH			
CAPEX - In	frastructu	e Capital				
			Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	n	23m	23m	23m	-
	Screen Length		7m	7m	7m	-
	Bore Drilling		\$13,823	\$13,823	\$13,823	-
	Bore Deve	lopment	\$3,576	\$3,576	\$3,576	-
	Bore Scree	ning	\$8,363	\$8,363	\$8,363	-
	Consent a	nd Mgmt	\$12,612	\$12,612	\$12,612	-
	Pump Capa	acity	30lps	40lps	50lps	-
	Pump Size		12kw	15kw	19kw	-
	Pump Cost		\$5 <i>,</i> 900	\$7 <i>,</i> 866	\$9 <i>,</i> 833	-
	Switchgea	г Туре	VSD	VSD	Soft st	-
	Switchgea	r Cost	\$5,750	\$7,667	\$7,092	-
	Headwork	s Cost	\$7,500	\$7,500	\$7,500	-
	Flowmeter	Cost	\$2,600	\$2,600	\$2,600	-
	Flowmeter	Calibratio	\$480	\$480	\$480	-
	Pump Shee	1	\$3,800	\$3,800	\$3,801	-
	Undergrou	nd Pipe	\$5,000	\$5 <i>,</i> 000	\$5,000	-
	Undergrou	nd Power	\$15,000	\$5,000	\$5,000	-
	Lines Conr	ection		\$15,	000	
	Ancillary C	osts		\$14,	225	
	TOTAL CAR	PEX		\$271	,594	
OPEX - An	nual Costs					
				Max	Min	Average
	Depreciati	on - Pumps			\$2,360	
	Depreciati	on - Switch	gear		\$820	
	Depreciati	on - Bore			\$2,302	
	Depreciati	on - Headw	orks		\$808	
	Flowmeter	calibration	า		\$480	
	Telemetry	Service			\$1,440	
	Bore re-de	velopment			\$1,073	
	Pump Maintenance				\$1,896	
	Pump Serv	ice			\$3,000	
	KwH used			62,236	0	19,485
	KwH cost			\$17,846	\$315	\$5,631
	TOTAL OP	X		\$32,025	\$14,494	\$19,810

4.4. Karewarewa

			1	1		
SUMMAR	Y - Karewa	rewa				
pump capa	acity require	ed	20	lau		
	Peak powe	er required	39	kw		
	Min woll w	rate	17.6	ips mbgl		
	will well w		17.0	mbgi		
Product	ion Vear	Powe				
2015	-2016	30 207	Kw/H			
2015	-2010	12 550	KWH			
2010	-2017	56 698	KwH			
2018	-2019	13,109	KwH			
2019	-2020	47,574	KwH			
2020	-2021	1.182	KwH			
2021	-2022	44,867	KwH			
2022	-2023	10,813	KwH			
2023	-2024	80,216	KwH			
2024	-2025	49,496	KwH			
2025	-2026	90,462	KwH			
2026	-2027	2,118	KwH			
2027	-2028	1,622	KwH			
2028	-2029	16,006	KwH			
2029	-2030	133,794	KwH			
2030	-2031	41,529	KwH			
2031	-2032	100,714	KwH			
CAPEX - In	frastructu	re Capital				
			Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	h	35m	35m	-	-
	Screen Length		7m	7m	-	-
	Bore Drilli	ng	\$21,035	\$21,035	-	-
	Bore Deve	lopment	\$3,576	\$3,576	-	-
	Bore Scree	ening	\$8,363	\$8,363	-	-
	Consent a	nd Mgmt	\$12,612	\$12,612	-	-
	Pump Cap	асіту	30lps	601ps	-	-
	Pump Size		16KW	32KW	-	-
	Switchgoo	r Typo	30,270 VSD	310,540 VSD	-	-
	Switchgea	r Cost	\$8,060	\$16 121	-	-
	Headwork	s Cost	\$7,500	\$7 500	_	_
	Flowmeter	r Cost	\$2,600	\$7,500	_	
	Flowmeter	r Calibratio	\$480	\$480	-	_
	Pump Sher	1	\$3,800	\$3,800	-	-
	Undergrou	nd Pine	\$5,000	\$5,000	-	-
	Undergrou	ind Power	\$15.000	\$5.000	-	-
	Lines Conr	nection	. ,	\$15,	,000	
	Ancillary C	osts		\$12,	,275	
	TOTAL CA	PEX		\$226	i,198	
OPEX - An	nual Costs					
				Max	Min	Average
	Depreciati	on - Pumps			\$2,481	
	Depreciati	on - Switch	gear		\$967	
	Depreciati	on - Bore			\$1,823	
	Depreciation - Headw				\$808	
	Flowmeter Calibration				\$320	
	Bore ro de	velopmont			¢715	
	Pump Mai	ntenance			\$1 751	
	Pump Serv	ice			\$2,734 \$2,000	
	KwH used			133 794	1.182	44,880
	KwH cost			\$37,904	\$625	\$12.567
	TOTAL OP	EX		\$51.212	\$13.934	\$25.875

4.5. Louisa

SUMMAR	Y - Louisa					
pump capa	acity requir	ed				
	Peak powe	er required	4	kw		
	Max flow	rate	12	lps		
	Min well w	vater level	6.6	mbgl		
Product	ion Year	Powe	er use			
2015	-2016	215	KwH			
2016	-2017	16	KwH			
2017	-2018	16	KwH			
2018	-2019	0	KwH			
2019	-2020	16	KwH			
2020	-2021	0	KwH			
2021	-2022	0	KwH			
2022	-2023	0	KwH			
2023	-2024	137	KWH			
2024	-2025	0	KWH			
2025	-2026	0	KWH			
2020	-2027	0	KWH			
2027	-2028	0	KWH			
2028	-2029	2002	KWH			
2029	-2030	5005	KWH			
2030	-2031	846	KwH			
2051	2052	040				
CAPFX - Ir	ofrastructu	re Capital				
••••			Bore 1	Bore 2	Bore 3	Bore 4
	Bore Depth		32m	-	-	-
	Screen Ler	ngth	3m	-	-	-
	Bore Drilli	ng	\$19,232	-	-	-
	Bore Deve	lopment	\$1,788	-	-	-
	Bore Scree	ening	\$4,095	-	-	-
	Consent a	nd Mgmt	\$12,612	-	-	-
	Pump Cap	acity	15lps	-	-	-
	Pump Size		6kw	-	-	-
	Pump Cost	t	\$3,228	-	-	-
	Switchgea	r Type	VSD	-	-	-
	Switchgea	r Cost	\$3,146	-	-	-
	Headwork	s Cost	\$7,500	-	-	-
	Flowmete	r Cost	\$2,600	-	-	-
	Flowmete	r Calibratio	\$480	-	-	-
	Pump Shee	d 1 5:	\$3,800	-	-	-
	Undergrou	and Pipe	\$5,000	-	-	-
	Linos Conr		\$15,000	- ¢15	-	-
	Ancillary C	osts		\$5	,000 575	
	TOTAL CA	PEX		\$99	.056	
OPEX - An	nual Costs					
				Max	Min	Average
	Depreciati	on - Pumps			\$323	
Depreciation - Switch			gear		\$126	
	Depreciation - Bore				\$755	
	Depreciation - Headw				\$404	
Flowmeter calibration			า		\$160	
	Telemetry Service				\$1,440	
	Bore re-development				\$179	
	Pump Mai	ntenance			\$424	
	Pump Serv	vice			\$3,000	
	KwH used			3,003	0	250
	KwH cost			\$898	\$0	\$70
	TOTAL OP	EX		\$7,708	\$6.810	\$6.880

4.6. Mangateretere

SUMMAR	Y - Mangat	eretere				
pump capa	acity require	ed				
	Peak powe	er required	34	kw		
	Max flow	rate	110	lps		
	Min well w	ater level	5.5	mbgl		
Product	ion Year	Powe	er use			
2015	-2016	56,506	KwH			
2016	-2017	59,809	KwH			
2017	-2018	53,487	KwH			
2018	-2019	11,762	KwH			
2019	-2020	53,377	KwH			
2020	-2021	26,585	KwH			
2021	-2022	58,742	KwH			
2022	-2023	57,985	KwH			
2023	-2024	64,828	KwH			
2024	-2025	78,788	KwH			
2025	-2026	69,825	KwH			
2026	-2027	34,825	KwH			
2027	-2028	31,335	KwH			
2028	-2029	44,354	KwH			
2029	-2030	93.130	KwH			
2030	-2031	54.699	KwH			
2031	-2032	62.089	KwH			
		,				
CAPEX - Ir	frastructu	re Capital				
			Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	h	18m	18m	18m	-
	Screen Ler	ngth	5m	5m	5m	-
	Bore Drilli	-σ 1σ	\$10,818	\$10,818	\$10,818	-
	Bore Deve	lonment	\$3,576	\$3,576	\$3.576	-
	Bore Scree	ning	\$6,229	\$6,229	\$6,229	-
	Consent a	nd Mømt	\$12,612	\$12.612	\$12.612	-
	Pump Cap	acity	30lps	40lps	50lps	-
	Pump Size		10kw	13kw	16kw	-
	Pump Cost	1	\$4.986	\$6.648	\$8.311	-
	Switchgea	r Type	VSD	VSD	VSD	-
	Switchgea	r Cost	\$4,860	\$6,480	\$8,100	-
	Headwork	s Cost	\$7,500	\$7,500	\$7,500	-
	Flowmeter	r Cost	\$2.600	\$2,600	\$2.600	-
	Flowmeter	r Calibratio	\$480	\$480	\$480	-
	Pump Sher	1	\$3,800	\$3,800	\$3,801	-
	Undergrou	nd Pine	\$5,000	\$5,000	\$5,000	-
	Undergrou	ind Power	\$15.000	\$5,000	\$5,000	-
	Lines Conr	nection	,,	\$15	000	
	Ancillary C	osts		\$13.	753	
	TOTAL CA	PEX		\$250	.984	
				7200		
OPEX - An	nual Costs					
				Max	Min	Average
	Depreciati	on - Pumps			\$1,995	
	Depreciati	on - Switch	gear		\$778	
	Depreciati	on - Bore	5001		\$1,994	
	Depreciati	on - Headw	/orks		\$808	
	Flowmeter	r calibratio	n		\$480	
	Tolomotry Sonvice				\$1 440	
	Bore re-de	velonment			\$1 073	
	Pump Mai	ntenance	1		\$1 778	
	Pump Serv	ice			\$3,000	
	KwH used			93 130	11 762	53 654
	KwH cost			\$26.431	\$3,559	\$15 171
	TOTAL OP	FX		\$39 776	\$16 905	\$28 516
		.			÷±0,505	~_0,010

4.7. Raupare

SUMMAP	Y - Raunar	2				
pump capa	acity requir	ed				
pump cup	Peak now	er required	11	kw		
	Max flow	rate	43	lps		
	Min well w	vater level	2.1	mbgl		
				Ŭ		
Product	ion Year	Powe	er use			
2015	-2016	0	KwH			
2016	-2017	1,283	KwH			
2017	-2018	0	KwH			
2018	-2019	0	KwH			
2019	-2020	1,028	KwH			
2020	-2021	0	KwH			
2021	-2022	73	KwH			
2022	-2023	0	KwH			
2023	-2024	1,998	KwH			
2024	-2025	183	KwH			
2025	-2026	5,511	KwH			
2026	-2027	0	KwH			
2027	-2028	0	KwH			
2028	-2029	0	KwH			
2029	-2030	18,166	KwH			
2030	-2031	1,484	KwH			
2031	-2032	1,004	KwH			
CAPEX - Ir	nfrastructu	re Capital				
	Dave Dave	 -	Bore 1	Bore 2	Bore 3	Bore 4
	Bore Dept	n	3/m	3/m	-	-
	Screen Ler	igtn	8m 622.227	8m 622.227	-	-
	Bore Drilli	lonmont	\$22,237	\$22,237	-	-
	Boro Scro	ning	\$5,570	\$5,570	-	-
	Consent a	nd Mamt	\$9,430	\$9,430	-	-
	Pump Can	acity	20lps	30lns	-	_
	Pump Size		5kw	8kw	-	-
	Pump Cost		\$2.807	\$4.211	-	-
	Switchgea	r Type	VSD	VSD	-	-
	Switchgea	r Cost	\$2.736	\$4.104	-	-
	Headwork	s Cost	\$7,500	\$7,500	-	-
	Flowmete	r Cost	\$2,600	\$2,600	-	-
	Flowmete	r Calibratio	\$480	\$480	-	-
	Pump Shee	b	\$3,800	\$3,800	-	-
	Undergrou	und Pipe	\$5,000	\$5,000	-	-
	Undergrou	und Power	\$15,000	\$5 <i>,</i> 000	-	-
	Lines Conr	nection		\$15,	000	
	Ancillary C	osts		\$8,7	762	
	TOTAL CA	PEX		\$192	,090	
OPEX - An	nual Costs					
				Max	Min	Average
	Depreciation - Pumps				\$702	
	Depreciati	on - Switch	gear		\$274	
	Depreciation - Bore				\$1,914	
	Depreciation - Headw				\$808	
	Flowmeter calibration				\$320	
	Telemetry Service Bore re-development				\$1,440	
					\$/15	
	Pump IVial	ico			\$875 63.000	
	Fump Serv	ice		10 166	\$3,000 0	1 000
	KwH cost			10,100 ¢5 211	0 \$75	1,000
	TOTAL OP	FX		\$15 260	\$10 172	\$10 554