

Improving understanding and management of erosion with LiDAR

Hugh Smith

Research Leader, Erosion Processes & Management Manaaki Whenua – Landcare Research Palmerston North, <u>smithh@landcareresearch.co.nz</u>

Outline

- 1. Sub-project scope
- 2. Existing erosion models for the Hawke's Bay region
- 3. Regional LiDAR coverage and digital stream network
- 4. Data collection for erosion modelling
- 5. Upgraded shallow landslide susceptibility model
- 6. LiDAR-based SedNetNZ model
- 7. Key messages

1. Erosion sub-project

Scope

Upgrade regional erosion models to use higher resolution LiDAR topographic data alongside the targeted acquisition of new erosion data for modelling.

Objectives		Outputs	
	upgrade SedNetNZ erosion and sediment load model	suspended sediment loads for each erosic process for each segment in the new digit	ads for each erosion ent in the new digital
\checkmark	improve the spatial representation of	stream network	
	the stream network	improved digital stream network derived	
\triangleright	upgrade regional-scale shallow	from regional LiDAR DEM	
	landslide susceptibility modelling	upgraded landslide susceptibility maps	

2.1 Existing models – Shallow landslide susceptibility

 \bigcirc

Landslide susceptibility: the spatial probability of future landslide occurrence given local environmental conditions

- Landslide susceptibility models use a statistical approach to quantify future land instability
- Susceptibility models predict **where** and not **when** (i.e. how frequently) landslides may occur.
- Landslide susceptibility modelling requires data:
 - Landslide source locations
 - Non-landslide locations
 - Spatial co-variates

Comparing methods of landslide data acquisition and susceptibility modelling: Examples from New Zealand

Check for updates

Hugh G. Smith *, Raphael Spiekermann, Harley Betts, Andrew J. Neverman Manaoki Whenua - Landcare Research, Palmerston North, New Zealand

2.1 Existing models – Shallow landslide susceptibility

- Rainfall-induced shallow landslides
- Regional layer 15 m resolution
- Used probability and class-based scales

Smith HG (2020) A region-wide assessment of shallow landslide susceptibility in Hawke's Bay. Manaaki Whenua - Landcare Research Contract Report LC3720 for Hawke's Bay Regional Council.

2.2 Existing models – SedNetNZ

- SedNetNZ predicts average annual suspended sediment loads
- Model sediment contributions from different erosion processes
- Only erosion process-based sediment model designed for NZ

3.1 Regional LiDAR coverage

- HB LiDAR survey did not include headwaters of the Mohaka and Wairoa catchments
- Complete catchment coverage needed for erosion and sediment modelling
- Gaps filled using data from Gisborne and Waikato LiDAR surveys
- Erosion modelling based on a 5 m digital elevation model (DEM)

3.2 Digital stream network for erosion modelling Improved planform accuracy of channel network • lines: LiDAR DEM (blue) vs. REC2 (red) Digital stream network 10-ha initiation threshold REC2 = 24,595 km LiDAR = 39,850 km

4.1 Data collection for modelling – Shallow landslide mapping

- Landslide data are required for landslide susceptibility modelling
- Mapping data needs to overlap with available LiDAR coverages
- Require high-resolution aerial or satellite imagery (≤ 0.5 m) for accurate mapping

Study area	Location	Study area (km²)	Number of landslides
1	Southern Hawke's Bay	175	27,170
2	Northern Hawke's Bay	3,162	45,879
3	Wairarapa, Greater Wellington	843	43,069

4.2 Data collection for modelling – Channel change mapping

- Repeated aerial imagery used to map river channel change and estimate bank erosion rates for use in SedNetNZ
- Mapped channel change for >420 km of channel across Hawke's Bay for 2010-11 vs. 2019-20 interval
- Combine with data from 386 km of channel in Greater Wellington

Channel planform changes between 2010-11 (yellow) vs. 2019-20 (red)

Shaded areas show zones of erosion

4.3 Data collection for modelling – Bank height mapping

- Require bank height information to model bank erosion
- Mapped bank heights along transects at 50 m intervals using 1 m DEM
- Mapped a total of n = 10,519
 banks
- Summarise bank height by stream reach

5. Upgraded shallow landslide susceptibility model

usceptibility (15 m DEM)

>0.3 - 0.4

<0.5 - 0.6

< 0.7 - 0.8

<08-09

>0.9 - 1

PREVIOUS MODEL

- National DEM based (15 m)
- 56,000 landslides
- Model performance:
 - AUC = 0.75 Accuracy = 68%

UPGRADED MODEL

- LiDAR-based (5 m DEM)
- 116,000 landslides
- Model performance:

AUC = 0.91 Accuracy = 84%

National 15 m DEMLiDAR 5 m DEMImage: Demonstration of the second second

Susceptibility (5 m DEM)

>0.1 - 0.2 >0.2 - 0.3 >0.3 - 0.4

>0.4 - 0.5

>0.5 - 0.6

>0.6 - 0.7

>0.7 - 0.8

>08-09

>0.9 - 1

6.1 SedNetNZ – Model upgrade using LiDAR

- Focus upgrade on shallow landslide, surface and riverbank erosion sub-models
- No change to the gully and earthflow sub-models – insufficient new data

Process sub-model	Modifications		
Shallow landslide erosion	Integrated high-resolution landslide susceptibility with landslide erosion sub-model		
Surface erosion	Implemented the Revised Universal Soil Loss Equation (RUSLE) to replace USLE		
Riverbank erosion	Developed data-driven model for riverbank erosion using new data		
Floodplain sedimentation	Use LiDAR 5 m DEM to identify areas adjacent channels where sediment may enter floodplain storage		

6.2 LiDAR-based SedNetNZ – Shallow landslide erosion

- Integrated new landslide susceptibility layer with landslide erosion sub-model
- Updated landslide-eroded area vs. slope relationship for soft and hard rock terrain using multi-decadal mapping data
- Estimate mean annual sediment load from landslide erosion

6.2 LiDAR-based SedNetNZ – Riverbank erosion

- Large increase in data \rightarrow move to data-driven models
- Compared sub-models:
 - Process Original: prior variable selection to represent process relationships; two variables fitted using original channel data (Smith et al. 2019)
 - Process Updated: same as above, fitted with expanded channel change dataset
 - General Additive Model (GAM) with automated variable selection; allows non-linear relationships with constraints
 - Random Forest (RF) model: machine learning algorithm, automated variable selection, no constraints
- Used cross validation to compare model predictive performance (repeated 1000 times)

'Process – Original' sub-model (Smith et al. 2019)

6.2 LiDAR-based SedNetNZ – Riverbank erosion

- 1. Bank migration rate
- Model fitting (all data):

Error (m y ⁻¹)	Process-O	Process-U	GAM	RF
RMSE	0.78	0.38	0.36	0.15
MAE	0.65	0.14	0.17	0.06
	<u> </u>	L		J
	~40 km channel dat	~800 km channel data		

• Predictive performance (cross-validation):

Error (m y ⁻¹)	Process-O	Process-U	GAM	RF
RMSE	1.1	0.37	0.39	0.31
MAE	0.76	0.14	0.18	0.14

2. Estimate reach-scale bank height

3. Reach-scale net bank load

- RF model fitted using all data (R² = 0.87) and used to estimate suspended sediment load
- Estimated net load from bank erosion = 1.0 Mt yr⁻¹
- Previous model estimate = 0.7 Mt yr⁻¹

6.3 LiDAR-based SedNetNZ – Regional sediment budget

	Previous SedNetNZ		LiDAR SedNetNZ	
Estimated sediment loads delivered to the stream network	Suspended sediment load (Mt yr ⁻¹)	Percentage contribution to total load	Suspended sediment load (Mt yr ⁻¹)	Percentage contribution to total load
Shallow landslide erosion	4.9	66	5.4	64
Surface erosion	1.5	19	1.7	19
Riverbank erosion	0.70	9	1.0	12
Gully erosion	0.13	2	0.15	2
Earthflow erosion	0.27	4	0.27	3
Total load delivered to the stream network	7.5		8.5	
Total net load delivered to the coast	7.2		8.0	

6.4 LiDAR-based SedNetNZ – Model predictions

Shallow landslide erosion

Riverbank erosion

6.5 LiDAR-based SedNetNZ – Model predictions

- Model predictions include
 - Net suspended sediment loads (t yr⁻¹)
 - Subwatershed sediment yields (t km⁻² yr⁻¹)
- Compared modelled load vs. stream gauging estimates
- Correlation increased from $R^2 = 0.55$ to 0.67

7. Key messages

 \bigcirc

- Benefits of using higher resolution LiDAR-derived DEMs in erosion modelling:
 - improved model parameterisation and performance due to more accurate topographic data
 - better representation of the stream network e.g., channel sinuosity, channel slope
 - higher resolution raster layers
- Shallow landslide susceptibility modelling produces higher resolution layers to support better targeting of tree planting to those areas most susceptible to land instability
- LiDAR-based SedNetNZ provides improved predictions of erosion process contributions to suspended sediment loads and higher resolution layers to support land and water planning
- Future work using SedNetNZ could focus on modelling erosion mitigation and climate change scenarios to assess impacts on suspended sediment loads