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EXECUTIVE SUMMARY 

As part of the Hawke’s Bay 3D Aquifer Mapping Project (3DAMP), this report focuses on exploring 
how airborne electromagnetic (AEM; e.g. SkyTEM) data can be utilised within numerical groundwater 
model construction and the impact of its inclusion in the modelling workflow on predictive uncertainty. 
The Heretaunga Plains numerical groundwater model (hereafter referred to as ‘Heretaunga GW model’) 
was primarily utilised for this exploration, and a scripted framework was developed to facilitate future 
modelling. An additional simpler and smaller-scale numerical groundwater model was also used for 
data-worth experiments (the Bridge Pā GW model). This is the final in a series of Heretaunga Plains 
reports produced by the Hawke’s Bay 3D Aquifer Mapping Project (3DAMP). 

The Heretaunga GW model used was the steady-state Heretaunga GW model developed as part of 
the GNS-Science-led Te Whakaheke o Te Wai (TWOTW) Ministry of Business, Innovation & Employment 
(MBIE) Endeavour Programme. This model used a 3D geological model as its primary base for defining 
model layers and properties. As part of this study, the Heretaunga GW model was updated, primarily with 
SkyTEM-derived hydrogeological-interpretation models. 

These hydrogeological-interpretation models were informed by electrical-resistivity models that were 
developed from SkyTEM data. The workflow presented in this report has been specifically targeted at 
AEM that collect datasets over large areas; hereafter, the terminology ‘AEM data’ is used. However, 
although the workflow and results presented may be relevant to resistivity models developed from 
systems other than SkyTEM, only SkyTEM data has been utilised within this assessment. 

Additionally, the type of geology, lithology and freshness/salinity of groundwater impacts the applicable 
results and relationship of the resistivity model(s) to hydraulic conductivity. The area investigated 
is a primarily fresh groundwater resource hosted within unconsolidated sediments, where hydraulic 
conductivity is strongly controlled by the degree of clay versus gravel content. 

The following model parameters (initial values and their uncertainty estimates) were updated with the 
incorporation of AEM data: hydraulic conductivity (in both horizontal and vertical directions), streambed 
hydraulic conductivity, drain conductance and porosity. Additional parameters defined on the basis of 
hydraulic conductivity were also modified. These include general head boundary (GHB) conductance 
and elevation around the inland boundary of the model, as well as the coastal GHB conductance. 
Additionally, the following model structures were updated on the basis of AEM-based hydrogeological 
interpretation: model layering and depth to basement. To promote consistency in the different regional 
model experiments in this study, prior uncertainty on parameters (expressed as multipliers) were the 
same for all models; however, two versions of the models utilised AEM-derived data and models 
to pre-condition (algorithmically modify) initial (prior) parameter uncertainty estimates for hydraulic 
conductivity and porosity. In total, four different Heretaunga GW model versions were developed utilising 
the AEM-based hydrogeological interpretation models – (i) parameters updated, (ii) parameters updated 
and pre-conditioning undertaken, (iii) parameters and layers updated and (iv) parameters and layers 
updated and pre-conditioning undertaken. 

The figures generated herein are used to highlight the differences between the model versions. 
The updated Heretaunga GW model contains significantly greater property variation than the original 
Heretaunga GW model (e.g. in hydraulic conductivity) over short spatial scales, owing to the high spatial 
resolution of the AEM data. The incorporation of the AEM data modifies the mean values of prior 
parameter distributions and also the parameter uncertainty (distribution standard deviation). The extent 
to which initial (prior) parameter distributions were modified, on the basis of the AEM data, varies across 
the modelled domain. In many locations, the incorporation of AEM data reduced prior parameter standard 
deviation, while, in other locations, prior parameter standard deviations were increased. Some changes 
are subtle, while others are more pronounced. 
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History-matching to hydrological and hydrogeological system observations (e.g. groundwater levels) 
and simulation of five scenarios was undertaken to explore differences in prior (before history-matching) 
and posterior (after history-matching) uncertainty for specific predictions between the different models. 
The added benefit of AEM-derived models is most significant for predictions that are sensitive 
to smaller-scale flow paths. It is also most significant wherever the prior parameter uncertainty 
distribution was previously under-estimated. 

Two different types of analyses were also undertaken to explore changes in model predictions using 
AEM data, conventional hydrogeological data (e.g. groundwater levels, etc.) and less conventional tritium 
measurements: (i) history-matching outputs when using tritium data with AEM data and (ii) data-worth 
analyses. The tritium plus AEM analysis looked at the impact of history-matching to a full dataset with 
and without tritium and AEM. In contrast, the data-worth analysis simply explores the worth of data using 
a one-at-a-time approach, therefore isolating the impact of prediction-relevant information in AEM data 
where we assume that either: (i) there is no existing data and AEM data is added in or (ii) there is ‘all’ 
existing data and each dataset is removed one at a time. The data-worth analysis focused on stream 
flow, groundwater level and groundwater–surface-water-exchange predictions. 

As would be expected, with the inclusion of tritium age-tracer data, predictions of groundwater age were 
impacted. In most cases, the uncertainty of these age predictions was reduced for model versions that 
combined AEM and tritium data, relative to model versions that either excluded tritium data or did not 
incorporate the AEM data. This is an interesting result, indicating that AEM-informed models appear to 
enhance the ability to extract valuable information from data sources that are influenced by fine-scale 
system complexity, such as tritium. Therefore, the simulated equivalents are impacted by parameter 
detail that may be illuminated by AEM data. 

The data-worth analysis confirms what we already know – that, if there is no data, then the best data 
to gather is that of the same type as the prediction. However, in the context of exploring a range of 
predictions, the model results indicate that, unlike other data, AEM-derived hydraulic conductivity data 
would improve the reliability (reduce the uncertainty) of all predictions explored – no other single 
dataset was able to achieve this. This indicates the general utility of AEM data in providing information 
that enhances the reliability of all prediction types to a significant degree. 
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1.0 Introduction 
The objectives of this report are to explore how airborne electromagnetic (AEM; e.g. SkyTEM) data 
can be utilised within numerical groundwater model construction and the impacts of its inclusion in 
the numerical workflow on predictive uncertainty. The Heretaunga Plains numerical groundwater model 
(hereafter referred to as ‘Heretaunga GW model’; Figure 1.1) is primarily utilised for this exploration, 
and a scripted framework is developed to enable rapid future modelling. An additional simpler and 
smaller-scale numerical groundwater model is also used for data-worth experiments (the Bridge Pā 
GW model; see Section 1.2.2). This is the final in a series of Heretaunga Plains reports produced by the 
Hawke’s Bay 3D Aquifer Mapping Project (3DAMP). 

3DAMP is a five-year initiative (2019–2024) jointly funded by the Provincial Growth Fund (PGF), Hawke’s 
Bay Regional Council (HBRC) and GNS Science’s (GNS) Groundwater Strategic Science Investment Fund 
(SSIF) research programme. The project applies SkyTEM technology to improve mapping and modelling 
of groundwater resources within the Heretaunga Plains, Ruataniwha Plains and Poukawa and Ōtāne 
basins. 3DAMP involves collaboration between HBRC, GNS and the Aarhus University HydroGeophysics 
Group (HGG). This numerical groundwater modelling work is also co-funded by the GNS-Science-led 
Te Whakaheke o Te Wai (TWOTW) Ministry of Business, Innovation & Employment (MBIE) Endeavour 
Programme. 

SkyTEM (a type of AEM data-collection system) datasets are used to create resistivity models. Resistivity 
models can be developed from a large number of different types of instruments (both airborne and 
ground-based) with different depth penetrations, resolutions and sensitivities. The workflow presented 
in this report has been specifically targeted at AEM that collect datasets over large areas; hereafter, 
the terminology ‘AEM data’ is used. However, although the workflow and results presented may be 
relevant to resistivity models developed from systems other than SkyTEM, only SkyTEM data has been 
utilised within this assessment (as provided by Rawlinson et al. [2024]). 

The primary objectives for the modelling refinement work undertaken are as follows: 

1. Explore: 

a. how AEM data can be utilised in numerical groundwater model construction, and 

b. how the utilisation of AEM affects the associated predictive uncertainty, using the Heretaunga 
GW model as a case study. 

2. Develop a new numerical model scripted framework incorporating AEM data, using the Heretaunga 
GW model as a case study. 

Hemmings et al. (in prep.) describes an update of the Heretaunga GW model to assimilate groundwater 
age data as part of TWOTW. The report herein builds on Hemmings et al. (in prep.) and further extends 
Rawlinson et al. (2024), which briefly described the update of the reference TWOTW Heretaunga GW 
model using SkyTEM-derived hydrogeological models as part of 3DAMP. 

This work does not intend to re-develop the existing numerical groundwater model developed by HBRC 
(Rakowski and Knowling 2018). Learnings and outputs from this modelling work are intended to act 
as a guide for updating existing or future numerical groundwater models should HBRC wish to do so for 
scientific or policy-development purposes. 
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Figure 1.1 Heretaunga GW model area, shown as the active domain of Layer 1. Also shown for comparison is 

the Heretaunga SkyTEM model area (extent of the 3D models derived from the SkyTEM data). 

1.1 Brief Overview of Important Numerical Groundwater Modelling and 
Uncertainty Analysis Definitions 

The following definitions are important to understand for the concepts presented in this report: 

• Simulated outputs: Model-derived outputs, either to match to system observations or to track as 
predictions. 

• Budget components: Broad-scale model outputs that aggregate net components of the 
hydrological budget (e.g. total recharge, total offshore groundwater flow, total surface water–
groundwater exchange). 

• Model parameters: Model input values that, if adjusted, can modify simulated outputs; these are 
used as containers of model uncertainty (e.g. hydraulic conductivity). 

• Prior parameter uncertainty: Definition of the initial uncertainty in model parameters, based on 
expert knowledge and literature values. The mean of this distribution results in the base model 
parameters. 
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• Prior prediction uncertainty: Initial uncertainty in model predictions and simulated output values; 
derived through the propagation of model prior parameter uncertainty through the numerical model. 

• Base model parameters: Mean of the prior parameter probability distribution. 

• Observations: Historical system observations (data) that can have a numerical simulated 
counterpart (e.g. groundwater levels, stream flows). 

• History-matching: Calibration or conditioning of model parameters through matching simulated 
outputs to historical system observations (observations; data). 

• Pre-conditioning: Steps taken prior to history-matching to improve the definition of the prior 
parameter uncertainty. 

• Posterior uncertainty: Uncertainty in model parameters after conditioning to observations. 
The propagation of this uncertainty through to simulated outputs provides the posterior prediction 
uncertainty. 

• Scenarios: Alternative system stress conditions that are explored with the numerical model, under 
uncertainty. 

• Data worth: Ability of an observation or observation type to reduce the uncertainty of a prediction 
made by a model. 

• Realisation: A single set of model parameter values or associated simulated outputs. 

• Ensemble: A collection of realisations that provides a representation of model uncertainty. 

1.2 Input Models 

The reference model used is the steady-state Heretaunga GW model developed as part of TWOTW 
(Hemmings et al., in prep.). This model used a 3D geological model (Begg et al. 2022) combined with 
expert knowledge and literature values as its primary base for defining model layers and properties 
(e.g. hydraulic conductivity). In the subsequent text, it will be referred to as the TWOTW or ‘geo’ model 
version. The Heretaunga GW model was further updated here with SkyTEM-derived hydrogeological 
interpretation models developed in Rawlinson (2023). 

1.2.1 Te Whakaheke o Te Wai (TWOTW) Heretaunga Numerical Groundwater Model 
(Heretaunga GW Model) 

The geo model version (TWOTW; Hemmings et al., in prep.) was built on the numerical model presented 
in Rakowski and Knowling (2018) as part of the TANK (Tutaekuri, Ahuriri, Ngaruroro and Karama rivers) 
Plan Change (Baker et al. 2020). The lateral extent of the active domain is the same as the TANK model 
(Figure 1.1), and the spatial discretisation remains at 100 x 100 m with a density-corrected, offshore 
boundary condition. However, the TWOTW model extends the TANK numerical model in a number of 
aspects. This is discussed in detail in Hemmings et al. (in prep.) and is briefly summarised here: 

• Conversion of the numerical simulation from MODFLOW-2005 to MODFLOW6. 

• Extension of simulated domain to the ground surface. The TANK model was focused on 
system behaviour within the Quaternary aquifer units (Q2–Q7). As such, the model top was at the 
geologically inferred base of the Holocene sediment confining unit (where present). As the variable 
competency of the confining unit may have a control on the predictions of interest, the confining 
unit has been explicitly simulated in the TWOTW update of the model. As identified in Rakowski 
and Knowling (2018), the inclusion of this surficial unit in the numerical simulation has a significant 
impact on numerical complexity and therefore on model simulation time. 

• Lateral extension of the coastal general head boundary condition (GHB) in the surface layer 
to cover the entire offshore portion of the domain. This extension was applied because the 
surface layer now reflects the submarine surface in the offshore portion and to allow development 
of upward flow in the nearshore region. The offshore boundary in deeper layers is still only defined 
for the most distal offshore cells. 
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• Explicit simulation of recharge in the confined portion of the domain. The TANK model excluded 
recharge in this portion. Base (prior mean) recharge is now derived from a NIWA (National Institute 
of Water & Atmospheric Research) TOPNET simulation (e.g. Yang 2017). 

• Increased vertical discretisation. With a major objective of the TWOTW model being to explore 
the impact of assimilating tritium, the number of model layers discretising the numerical domain 
was increased from two to nine (after Knowling et al. [2020]). These were aligned to inferred 
(hydro)geological units from the 2022 Leapfrog geological model (Begg et al. 2022). 

• Definition of encircling GHB. Combined groundwater age, chemistry and stable-isotope analyses 
suggest that budgetary contributions to the plains from the surrounding hillslope may be significant 
(Morgenstern et al. 2018). This boundary condition allows groundwater inflow (or outflow) from the 
surrounding hillslopes. 

• Re-specification of the surface-water network (Rivers) to use the MODFLOW6 SFR (Surface 
Flow Routing) package. This was done to allow two-way exchange between surface water and 
groundwater and transport of that flow downstream. Base river inflows into the domain were 
derived from a NIWA TOPNET simulation (e.g. Yang 2017). Incomplete specification of all fine-scale 
surface-water flow features was accommodated by combining the MODFLOW6 Drain (DRN) and 
Mover (MVR) packages. 

• Updated groundwater-abstraction records and estimates as provided by HBRC (July 2022). 

The TWOTW simulation consists of a MODFLOW6 steady-state groundwater flow model and (optional) 
transient tritium transport and age models for exploring predictions of groundwater age and the assimilation 
of tritium data. Here, focus is placed on the flow model for the predictions outlined in Section 1.3. 

As introduced in Section 1.1, numerical model analysis is undertaken through the lens of model 
uncertainty. This approach uses realisations of the numerical model parameters (representing parameter 
uncertainty) to quantify the uncertainty in model predictions. 

1.2.2 Te Whakaheke o Te Wai (TWOTW) Bridge Pā Numerical Groundwater Model 
(Bridge Pā GW Model) 

The Bridge Pā GW model domain occurs over a subset of the Heretaunga GW model and then also 
extends further up into the foothill area to include the full Paritua stream catchment (Figure 1.2). 
The Bridge Pā model has also been developed as part of the TWOTW programme and is the subject of 
a draft publication (Moore 2025, pers. comm.) that will be made available to HBRC once completed. 
The Bridge Pā model is a one-layer model developed to explore the flows within the Paritua Stream 
and its interaction with the underlying aquifer under a range of stress regimes. 

For this report, the Bridge Pā GW model has been used for data-worth explorations only (see Section 3.2). 
The ‘worth’ of data refers to the ability of an observation type to reduce the uncertainty of predictions 
made by a model. In this case, the observation type of interest is the set of AEM-derived hydrogeological 
interpretation models resulting from SkyTEM data acquisition and resistivity modelling. 

The details of the Bridge Pā GW model will be discussed in detail in the aforementioned draft publication 
(Moore 2025, pers. comm.); however, a brief summary is provided below for clarity. 

The modelled recharge is derived from the same NIWA TOPNET simulation as used by the Heretaunga 
GW model. 

The bottom of the single model layer was defined by the SkyTEM basement definition, except in areas 
where the basement outcrops at surface. Where the basement outcrops at the surface, a fixed layer 
thickness of 30 m was defined, allowing for the assumption that the hydraulic conductivity in these hill 
catchments takes on an abstract meaning. 
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A GHB boundary is used to represent: (i) the Ngaruroro River to the north of the model domain, (ii) the 
groundwater flow streamline co-incident with the pre-1867 Ngaruroro River course to the east of 
the model domain and (iii) the Awanui Stream south of the model domain. The spatially varying GHB 
boundary conductances are parameterised using pilot points spaced at approximately every fifth model 
GHB boundary cell. The GHB elevations are determined by the average stage height over each model 
stress period for river boundaries or by the average groundwater levels for the groundwater-flow 
streamlines. 

A no-flow boundary surrounds the hillslopes part of the model domain, which is consistent with the 
Paritua Stream catchment boundary. Groundwater age, chemistry and stable-isotope analyses suggest 
that most flow into the upper part of the model domain is derived from the hillslopes in the southeast 
of the domain (Morgenstern et al. 2018). This boundary condition allows overland and groundwater 
inflow (or outflow) from the surrounding hillslopes. It is possible that additional groundwater enters the 
surface catchment boundary – this is currently omitted from the model; however, the most significant 
mass balance terms (recharge across the catchment, groundwater pumping and stream outflow) suggest 
that this additional inflow is sufficiently minor in terms of the key prediction that this model has been 
constructed to simulate. 

A total of nine sequential steady-state stress periods have been defined, spanning pre-European to current 
catchment conditions. These are defined as: 

• SP1: Pre-European stress period. 

• SP2: Initial land-clearing stress period. 

• SP3: Changing the course of the Ngaruroro River in 1867 flood stress period. 

• SP4: Initial land-drainage stress period. 

• SP5: July 1970 – July 1990, border-dyke irrigation stress period. 

• SP6: July 2005 – July 2022, average stress period. 

• SP7: July 2018 – July 2019, wet stress period. 

• SP8: July 2020 – July 2021, dry stress period. 

• SP9: Dry stress period augmented by water released from dam. 

1.2.3 Airborne Electromagnetic (AEM)-Derived Models (from SkyTEM) 

Groundwater model updates presented in this report primarily utilise AEM-derived hydrogeological 
interpretation models developed in Rawlinson (2023) after SkyTEM acquisition and resistivity modelling. 

The Heretaunga GW model was updated using a model of estimated hydraulic conductivity 
(KH_initial_basehigh model; Rawlinson 2023) and a model of the fraction of coarse material (CC model; 
Rawlinson 2023). These models were derived using a combination of resistivity model values, large-scale 
manual interpretation of resistivity based on geology (to determine consolidated versus unconsolidated 
material), lithological log information, hydraulic conductivity information from pumping tests and hydraulic 
conductivity information informed by expert knowledge. For unconsolidated material, a linear relationship 
is assumed between resistivity and hydraulic conductivity, as well as coarse material fraction and 
hydraulic conductivity. For consolidated material, resistivity values were utilised to estimate likely 
locations of mudstone, sandstone and limestone, and uniform values were set for each of these geology 
types based on a combination of pumping-test data and expert knowledge. Additionally, the clusters 
describing permeability, and their associated silhouette index, were used as part of pre-conditioning 
of parameter priors (utilising the point dataset underlying the 500 hydrostratigraphic realisations of Foged 
[2022] and Rawlinson [2023]), hereafter termed ‘clusters_dataset’. See Rawlinson (2023) for further 
details. 
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The Bridge Pā GW model is a one-layer model. As such, averages of the models were utilised for the 
data-worth explorations undertaken (see Section 3.2). Specifically, these data-worth analyses explore 
the worth of SkyTEM-derived hydraulic conductivity estimates as data, using: 

• The geometric mean of KH_initial_basehigh (Rawlinson 2023) through the vertical column of either 
the unconsolidated sediments or the consolidated sediments (selected based on which type of 
sediment is present at the surface). 

• The harmonic mean of the upper 5 m of KH_initial_basehigh (Rawlinson 2023). 

 
Figure 1.2 Location of the Bridge Pā model domain and specific predictions explored within the data-worth 

assessment (SW obs = surface-water observations; SoE well = groundwater-level observations). 
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1.3 Predictions 

1.3.1 Heretaunga GW Model 

This work primarily aims to explore the impact on a numerical model workflow and resultant predictive 
uncertainty through the incorporation of additional system information derived from AEM surveys. 
As such, a broad range of predictions are explored (Figure 1.3): 

• Budgetary components of the groundwater system: 

˗ Net offshore groundwater flow. 

˗ Net flow across hillslope boundaries (to or from the model domain). 

˗ Net groundwater–surface-water exchange. 

• Zonal disposition of the offshore groundwater flow, along the coast, divided into three zones: north, 
middle and south (see Figure 1.3; blue, orange and green, respectively). 

• Specific groundwater–surface-water exchange along a single Ngaruroro River segment between 
Maraekakaho and Roys Hill. 

• Stream flows at specific locations of interest that relate to spring-fed stream systems: 

˗ Tutaekuri-Waimate Stream at Goods Bridge. 

˗ Ruapare Stream at Ormond Road. 

˗ Karamu River at the floodgates. 

• Groundwater levels at eight locations across the domain. 

Changes in these predictions are explored under: 

• Base long-term averaged conditions, approximately aggregating the period from the 1970s to 2022. 

• Dry and wet climate scenarios. 

• Modified groundwater abstraction scenarios. 

More detail on the scenarios is provided in Section 2.4. 
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Figure 1.3 Prediction locations. Offshore flow prediction zones are denoted by three different colours; blue in the 

north, orange in the middle and green in the south. Net budgetary predictions for boundary flow and 
surface-water–groundwater exchange are not drawn. Note that layer locations of level predictions are 
in the modified model structure and may differ from those in Hemmings et al. (in prep.). 

1.3.2 Bridge Pā GW Model 

The Bridge Pā GW model predictions occur in one of nine different stress periods. Each stress period 
represents large-scale catchment changes from pre-European times through to present day, and these 
are identified where relevant. Four specific predictions are explored: 

• Groundwater–surface-water exchange flux along the Ngaruroro River segment between Maraekakaho 
and Roys Hill (‘sw-gw exchange’), during pre-European times (Stress period 1). 

• Groundwater–surface-water exchange flux along the Paritua Stream losing reach, which is defined 
for this study as between the Woolshed and Talbots monitoring sites (‘SW obs’ in Figure 1.2), during 
the dry summer of 2020/21 (Stress period 8). 

• Stream flow in the Paritua Stream (‘SW obs’ in Figure 1.2), as measured at Bridge Pā, during the 
period where border dyke irrigation was prevalent in the catchment (Stress period 5). 

• Groundwater levels at Well 15005 (‘SoE well’ in Figure 1.2) during the dry summer of 2020/21 
(Stress period 8). 
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2.0 Methods 

2.1 General Framework 

The following framework was followed: 

1. Different and iterative regional model adjustments were explored. For each version: 

a. An ensemble of regional model predictive scenario simulations were undertaken representing 
prior parameter uncertainty. 

b. The model was history-matched to long-term average groundwater-level data, stream flows 
and surface-water–groundwater exchange approximately reflecting the period 1972–2021. 

c. Posterior parameter uncertainty (after history-matching) was propagated to posterior prediction 
uncertainty through simulation of predictive scenarios. 

2. Data-worth assessments were made using the Bridge Pā GW model. 

The numerical modelling and pre- and post-processing was undertaken in a scripted framework, utilising 
widely-used, open-source Python libraries: 

• Flopy (Hughes et al. 2024; Bakker et al. 2016). 

• Pyemu (White et al. 2016, 2021). 

• Surface Water Network (Toews and Hemmings 2019). 

Regional model uncertainty propagation and history-matching was undertaken using PEST++IES (IES; 
iterative ensemble smoother; White et al. 2018). IES supports efficient history-matching with high dimensional 
parametrisation (expressing uncertainty for many thousands of parameters). The parametrisation approach 
and history-matching methodology is described in detail in Hemmings et al. (in prep.). 

In this report, focus is placed on the modifications made to the model structure and base-realisation 
parameter values on the basis of information contained within the AEM-derived models. 

2.2 Regional Model Updates 

2.2.1 Base Model Modifications 

Four different approaches for incorporating the information from the AEM-derived models into the 
Heretaunga GW model were explored. The (stochastic) numerical model predictions for these tests are 
compared to those for the reference model (TWOTW/geo model; Hemmings et al., in prep.). 

The two primary updates tested were: 

• ‘skytem-k’, or simply ‘k’, model – where only model properties (e.g. hydraulic conductivity, boundary-
condition conductance) were modified, relative to the reference model (Table 2.1). 

• ‘skytem-lays’, or ‘lays’, model – where a (re)interpretation of aquifer structure was also incorporated 
in a re-definition of model layers (Tables 2.1–2.2; Figures 3.1–3.3). 

The base-realisation property definition for the skytem-lays model was equivalent to the skytem-k model, 
with minor differences per layer associated with the different aggregation to different layer definition. 
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Table 2.1 Update of Heretaunga GW model parameters. 

Parameter geo Model (Hemmings et al., in prep.) skytem-k and skytem-lays Models 

Horizontal hydraulic 
conductivity 
(HK) 

Uniform values based on literature values and 
expert knowledge set to different geological 
model units (Begg et al. 2022). Low HK buffer 
added to basin edges to enable model fit to 
tritium data. Lower HK added to the western 
extent of Ngaruroro River to fit to groundwater 
levels. Geological model did not extend 
offshore; uniform values set based on 
expectation of confining layer extension in 
layer 1, gravel layers in layers 2–6 and medium 
permeability geology in layers 7–9.* 

SkyTEM-derived estimates of HK (geometric 
mean, clipped to a minimum of 5 x 10-4 m/day): 
KH_initial_basehigh model (Rawlinson 2023) 

Vertical hydraulic 
conductivity 
(K33 or VK) 

Uniform VK/HK ratios based on literature 
values and expert knowledge set to different 
geological model units (Begg et al. 2022). 

SkyTEM-derived estimates of coarse-fraction 
(CC model; Rawlinson 2023) and HK 
(KH_initial_basehigh model; Rawlinson 2023) 
converted to K33. K33 = HK*10(4*CC) – 4. 
Assumed minimum value of HK*10-4. 
(Vertical anisotropy assumed to have a 
log-linear relationship to clay content.) 

Coastal boundary 
conductance 
(GHB) 

Derived from HK and K33 (for layer 1) and the 
cell dimensions to convert to conductance (C) 
(C = HKA/b, where A is the area of which flow 
is occurring, and b is the thickness of the 
boundary with hydraulic conductivity HK). 

Derived from HK and K33 (for layer 1) and the 
cell dimensions to convert to conductance (C) 
(C = HKA/b, where A is the area of which flow is 
occurring, and b is the thickness of the 
boundary with hydraulic conductivity HK). 

Hillslope boundary 
conductance 
(GHB) 

A combined analysis of out-of-domain 
recharge (to estimate boundary fluxes) and 
the hydrogeological model informed 
hydraulic conductivity (HK). 

A combined analysis of out-of-domain recharge 
(to estimate boundary fluxes) and the 
hydrogeological model informed hydraulic 
conductivity (HK). In this instance, 
KH_initial_basehigh model provides further 
guidance of HK distribution associated with, 
for example, likely limestone occurrence, 
influencing boundary fluxes. 

Streambed hydraulic 
conductivity 
(RK) 

Values based on VK of layer 1, with 
linear-scaling adjustment between assumed 
minimum and maximum values 
(0.01 and 200 m/day, respectively). 

Calculated same as K33 but using the 
upper 4 m of the SkyTEM-derived models 
(arithmetic mean of CC and geometric mean of 
KH_initial_basehigh; Rawlinson 2023), with 
linear-scaling adjustment between assumed 
minimum and maximum values (0.01 and 
200 m/day, respectively). 

Drain conductance 
(DC) 

Values based on VK of layer 1, with adjustment 
to convert to conductance (using cell 
dimensions and thickness) and linear-scaling 
adjustment between assumed minimum and 
maximum values (10 and 2 x 105 m2/day, 
respectively). 

Calculated same as K33 but using the upper 4 m 
of the SkyTEM-derived models (arithmetic mean 
of CC and geometric mean of 
KH_initial_basehigh; Rawlinson 2023), with 
adjustment to convert to conductance (using 
cell dimensions and thickness) and linear-scaling 
adjustment between assumed minimum and 
maximum values (10 and 2 x 105 m2/day, 
respectively). 

*This assumption was applied to all original model parameters. 
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Table 2.2 Update of Heretaunga GW model structure. Visual comparisons are provided in Figures 3.1–3.3. 

Groundwater 
Model Layers 

geo and skytem-k Models skytem-lays Model 

Comment Hydrogeological Model 
Units (Begg et al. 2022) 

SkyTEM-Assisted 
Hydrogeological 
Interpretation 
(Sahoo et al. 2023; 
Rawlinson 2023) 

Model layers L1–L3 

Awatoto member  

Hydrogeological Unit 1 
Minimum thickness (6 m base of L3) 
set where non-existent. 

Younger river gravels 

Wider Heretaunga formation 

Model layers L4–L6 
Maraekakaho Formation and 
riverbed and river mouth gravels 

Hydrogeological Unit 2 
Minimum thickness (45 m base of 
L6) set where non-existent. 

Model layers L7–L9 Early to middle Pleistocene Hydrogeological Unit 3 
Minimum thickness (120 m base of 
L9) set where non-existent. 

Basement 
Undifferentiated 
Paleocene–Pleistocene 

Hydrogeological Unit 4 
Cut-off for base of L9 set at -270 m 
below sea level. 

2.2.2 Parameter Uncertainty 

The base model parameters define only the mean of the prior parameter distributions. Although these 
mean values may differ greatly between the skytem-k, skytem-lays and geo models, the definition of 
uncertainty was approached identically for all models. This was done purposefully to provide a fair 
comparison between the models. 

As detailed in Hemmings et al. (in prep.), for history-matching and uncertainty analysis most parameters 
are specified as multi-scale multiplier parameters. Other parameters (e.g. drain elevation) are specified 
through multi-scale additive parameters. These multiplier and additive parameters combine to act on 
individual model-parameter values (such as the hydraulic conductivity of a model cell). The use of nested, 
multi-scale multiplier and additive parameters supports the definition of parameter uncertainty at multiple 
scales (e.g. layer-scale, pilot-point scale and cell-by-cell). It also allows relatively localised conditioning 
of parameters, only where informed by data (e.g. McKenna 2019; White et al. 2020a). For the skytem-k 
and skytem-lays tests, the prior parameter uncertainty of these multiplier (or additive) parameters were 
defined equivalently to the geo model (Table 2.3), although the base realisation of model-parameter 
values that these multipliers or additive parameters act on may be significantly different. 

The AEM-informed parameter fields were more spatially heterogeneous than the TWOTW/geo model 
parameter fields, which resulted in additional challenges with model convergence. As such, more prior 
realisations (600) were required to ensure sufficient realisations in the posterior predicted ensemble. 
As detailed in Hemmings et al. (in prep.), realisations were drawn via Monte Carlo sampling of the block 
diagonal prior parameter co-variance matrix. Diagonal values of the prior parameter co-variance matrix 
are the standard deviations of individual parameters (listed in Table 2.3); off-diagonals express the 
expected relationship between parameters within the same group, defined according to their separation 
distance. These relationships were expressed through stationary geostructures defined by variograms, 
with range parameter (a) detailed in Table 2.3, and a sill proportional to the standard deviations of 
individual parameters (also detailed in Table 2.3). 
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2.2.3 Parameter Pre-Conditioning 

Two further tests attempted to incorporate additional information from the AEM-derived models to 
pre-condition the prior parameter uncertainty definition. These versions are referred to as skytem-k-
precond (k-pc) and skytem-lays-precond (lays-pc). 

For these tests, the 600 prior realisations were conditioned through a precursory, independent IES 
exercise. Here, the observations were set as loose inequality constraints reflecting the expected minimum 
or maximum hydraulic properties associated with hydrogeological formations identified through the AEM 
interpretation. The same multiplier parameters detailed in Section 2.2.2 were conditioned to fit these 
expected conditions. 

In these tests, the clusters_dataset (Rawlinson 2023) was used to identify model cells estimated to have 
a high probability of containing gravels (cluster 0 where the silhouette index is greater than 0.58 [the mean 
silhouette index]). The log-transform of hydraulic conductivity in these cells was then conditioned to a 
minimum value of 2.30 (200 m/day). Cells identified as high probability of cluster 2 or 3 (low permeability) 
(with silhouette index greater than 0.58) were conditioned to expected maximum log-transformed 
hydraulic conductivity of 2.78 (600 m/day). Constraint values were determined from an assessment of 
clusters and estimated hydraulic conductivity from pumping tests (see pumping-test dataset in Rawlinson 
[2023]). To prevent over-adjustment of the large-scale parameters (e.g. layer-scale multipliers), additional 
loose constraints were put on layer average hydraulic conductivity for cells identified as cluster 0, 2 or 3: 
cluster 0 cells layer average log-transformed hydraulic conductivity was constrained to less than 3.70 
(5000 m/day), while the target for cluster 2 and 3 layer average was greater than -1 (0.1 m/day). 

The pre-conditioning was undertaken on 1000 parameter realisations with three IES iterations. A 600-
realisation sub-sample of the subsequent pre-conditioned realisations were then history-matched in the 
same manner as the other tests (skytem-k and skytem-lays). 
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Table 2.3 Parameter group summary. Note: parameters are expressed as multipliers or are additive, acting on initial model-input values, and are unitless. Bounds and 
standard deviations for groups marked as ‘log’ transformed are in log10 space. Ultimate bounds are specified as un-transformed and related to model-input 
values (after multiplier and additive parameters have been applied). 

Group Name Verbose Name Style Type Transform Count Initial 
Value 

Lower 
Bound 

Upper 
Bound 

Standard 
Deviation 

a 
(m) 

Ultimate 
Lower 
Bound 

Ultimate 
Upper 
Bound 

drn-cond-cnst_inst:0 Drain conductance Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 
1e-2 m2d-1 1e9 m2d-1 

drn-cond-grd_inst:0 Drain conductance Multiplier Grid log 151,302 0 -2.000 2.000 0.667 10,000 

drn-elev-cnst_inst:0 Drain elevation Additive Global-constant None 1 0 -1.000 1.000 0.333 - - - 

drn-elev-grd_inst:0 Drain elevation Additive Grid None 151,302 0 -1.000 1.000 0.333 10,000 - - 

dumpar_inst:0 
Dummy, insensitive 
parameter 

Multiplier Constant log 1 0 -1.000 1.000 0.333 - - - 

ghbboundc-cnst_inst:0 Boundary conductance Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

1e-10 m2d-1 1e3 m2d-1 
ghbboundc-grid_inst:0 Boundary conductance Multiplier Grid log 15,534 0 -3.000 3.000 1.000 10,000 

ghbboundc-layer_inst:0 Boundary conductance Multiplier Layer-constant log 9 0 -2.000 2.000 0.667 - 

ghbboundc-zone_inst:0 Boundary conductance Multiplier Zone-constant log 6 0 -3.000 3.000 1.000 - 

ghbboundh-grid_inst:0 Boundary head Additive Grid None 15,534 0 -10.000 10.000 3.333 10,000 - - 

ghbboundh-layer_inst:0 Boundary head Additive Layer-constant None 9 0 -5.000 5.000 1.667 - - - 

ghbboundh-zone_inst:0 Boundary head Additive Zone-constant None 6 0 -5.000 5.000 1.667 - - - 

ghbcoastc-grid_inst:0 Offshore conductance Multiplier Grid log 3894 0 -3.000 3.000 1.000 10,000 - - 

ghbcoastc-layer_inst:0 Offshore conductance Multiplier Layer-constant log 9 0 -2.000 2.000 0.667 - - - 

hk-cn_k:0 
Horizontal hydraulic 
conductivity, Layer: 0 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

1e-5 md-1 1e5 md-1 

hk-cn_k:1 
Horizontal hydraulic 
conductivity, Layer: 1 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

hk-cn_k:2 
Horizontal hydraulic 
conductivity, Layer: 2 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

hk-cn_k:3 
Horizontal hydraulic 
conductivity, Layer: 3 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 
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Group Name Verbose Name Style Type Transform Count Initial 
Value 

Lower 
Bound 

Upper 
Bound 

Standard 
Deviation 

a 
(m) 

Ultimate 
Lower 
Bound 

Ultimate 
Upper 
Bound 

hk-cn_k:4 
Horizontal hydraulic 
conductivity, Layer: 4 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

hk-cn_k:5 
Horizontal hydraulic 
conductivity, Layer: 5 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

hk-cn_k:6 
Horizontal hydraulic 
conductivity, Layer: 6 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

hk-cn_k:7 
Horizontal hydraulic 
conductivity, Layer: 7 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667  

hk-cn_k:8 
Horizontal hydraulic 
conductivity, Layer: 8 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

hk-gr_k:0 
Horizontal hydraulic 
conductivity, Layer: 0 

Multiplier Grid log 51,016 0 -3.000 3.000 1.000 10,000 

hk-gr_k:1 
Horizontal hydraulic 
conductivity, Layer: 1 

Multiplier Grid log 51,016 0 -3.000 3.000 1.000 10,000 

hk-gr_k:2 
Horizontal hydraulic 
conductivity, Layer: 2 

Multiplier Grid log 51,016 0 -3.000 3.000 1.000 10,000 

hk-gr_k:3 
Horizontal hydraulic 
conductivity, Layer: 3 

Multiplier Grid log 51,016 0 -3.000 3.000 1.000 10,000 

1e-5 md-1 1e5 md-1 

hk-gr_k:4 
Horizontal hydraulic 
conductivity, Layer: 4 

Multiplier Grid log 51,016 0 -3.000 3.000 1.000 10,000 

hk-gr_k:5 
Horizontal hydraulic 
conductivity, Layer: 5 

Multiplier Grid log 51,016 0 -3.000 3.000 1.000 10,000 

hk-gr_k:6 
Horizontal hydraulic 
conductivity, Layer: 6 

Multiplier Grid log 36,578 0 -3.000 3.000 1.000 10,000 

hk-gr_k:7 
Horizontal hydraulic 
conductivity, Layer: 7 

Multiplier Grid log 36,578 0 -3.000 3.000 1.000 10,000 
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Group Name Verbose Name Style Type Transform Count Initial 
Value 

Lower 
Bound 

Upper 
Bound 

Standard 
Deviation 

a 
(m) 

Ultimate 
Lower 
Bound 

Ultimate 
Upper 
Bound 

hk-gr_k:8 
Horizontal hydraulic 
conductivity, Layer: 8 

Multiplier Grid log 36,578 0 -3.000 3.000 1.000 10,000 

hk-pp_k:0 
Horizontal hydraulic 
conductivity, Layer: 0 

Multiplier Pilot point log 511 0 -2.000 2.000 0.667 10,000 

hk-pp_k:1 
Horizontal hydraulic 
conductivity, Layer: 1 

Multiplier Pilot point log 511 0 -2.000 2.000 0.667 10,000 

hk-pp_k:2 
Horizontal hydraulic 
conductivity, Layer: 2 

Multiplier Pilot point log 511 0 -2.000 2.000 0.667 10,000 

hk-pp_k:3 
Horizontal hydraulic 
conductivity, Layer: 3 

Multiplier Pilot point log 511 0 -2.000 2.000 0.667 10,000 

hk-pp_k:4 
Horizontal hydraulic 
conductivity, Layer: 4 

Multiplier Pilot point log 511 0 -2.000 2.000 0.667 10,000 

hk-pp_k:5 
Horizontal hydraulic 
conductivity, Layer: 5 

Multiplier Pilot point log 511 0 -2.000 2.000 0.667 10,000 

hk-pp_k:6 
Horizontal hydraulic 
conductivity, Layer: 6 

Multiplier Pilot point log 365 0 -2.000 2.000 0.667 10,000 

hk-pp_k:7 
Horizontal hydraulic 
conductivity, Layer: 7 

Multiplier Pilot point log 365 0 -2.000 2.000 0.667 10,000 

1e-5 md-1 1e5 md-1 

hk-pp_k:8 
Horizontal hydraulic 
conductivity, Layer: 8 

Multiplier Pilot point log 365 0 -2.000 2.000 0.667 10,000 

rech-cn_inst:0 Recharge Multiplier Global-constant log 1 0 -0.523 0.477 0.167 - 
0 md-1 

- 

rech-gr_inst:0 Recharge Multiplier Grid log 51,016 0 -1.000 1.000 0.333 10,000 - 

sfrhk_inst:0 
Horizontal hydraulic 
conductivity 

Multiplier Grid log 5074 0 -2.000 2.000 0.667 10,000 

1e-10 md-1 1e4 md-1 

sfrhk_inst:1 
Horizontal hydraulic 
conductivity 

Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

sfrin_inst:0 Stream inflow Multiplier Grid log 19 0 -0.301 0.301 0.100 10,000 - - 
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Group Name Verbose Name Style Type Transform Count Initial 
Value 

Lower 
Bound 

Upper 
Bound 

Standard 
Deviation 

a 
(m) 

Ultimate 
Lower 
Bound 

Ultimate 
Upper 
Bound 

sfrin_inst:1 Stream inflow Multiplier Global-constant log 1 0 -0.301 0.301 0.100 - - - 

vka-cn_k:0 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 0 
Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

1e-6 100 

vka-cn_k:1 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 1 
Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

vka-cn_k:2 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 2 
Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

vka-cn_k:3 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 3 
Multiplier Global-constant log 1 0 -2.000 2.000 0.667 - 

vka-cn_k:4 
Vertical hydraulic conductance

Horizontal  hydraulic conductance
 

Layer: 4 
Multiplier Global-constant log 1 0 -2.000 2.000 0.667  

vka-cn_k:5 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 5 
Multiplier Global-constant log 1 0 -2.699 2.699 0.900 - 

vka-cn_k:6 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 6 
Multiplier Global-constant log 1 0 -2.699 2.699 0.900 - 

vka-cn_k:7 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 7 
Multiplier Global-constant log 1 0 -2.699 2.699 0.900 - 

1e-6 100 

vka-cn_k:8 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 8 
Multiplier Global-constant log 1 0 -2.699 2.699 0.900 - 

vka-gr_k:0 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 0 
Multiplier Grid log 51,016 0 -2.000 2.000 0.667 10,000 

vka-gr_k:1 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 1 
Multiplier Grid log 51,016 0 -2.000 2.000 0.667 10,000 

vka-gr_k:2 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 2 
Multiplier Grid log 51,016 0 -2.000 2.000 0.667 10,000 
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Group Name Verbose Name Style Type Transform Count Initial 
Value 

Lower 
Bound 

Upper 
Bound 

Standard 
Deviation 

a 
(m) 

Ultimate 
Lower 
Bound 

Ultimate 
Upper 
Bound 

vka-gr_k:3 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 3 
Multiplier Grid log 51,016 0 -2.000 2.000 0.667 10,000 

vka-gr_k:4 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 4 
Multiplier Grid log 51,016 0 -2.000 2.000 0.667 10,000 

vka-gr_k:5 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 5 
Multiplier Grid log 51,016 0 -2.699 2.699 0.900 10,000 

vka-gr_k:6 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 6 
Multiplier Grid log 36,578 0 -2.699 2.699 0.900 10,000 

vka-gr_k:7 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 7 
Multiplier Grid log 36,578 0 -2.699 2.699 0.900 10,000 

vka-gr_k:8 
Vertical hydraulic conductance

Horizontal  hydraulic conductance

Layer: 8 
Multiplier Grid log 36,578 0 -2.699 2.699 0.900 10,000 

welflux_inst:0 Pump rate Multiplier Grid log 1543 0 -0.155 0.114 0.045 - - - 
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2.3 Regional Model History-Matching 

2.3.1 Observations for History-Matching 

Parameters were conditioned through history matching to observations of system behaviour. See Figure 2.1 
for observation locations. The observation data was composed of: 

• 138 groundwater level (head) observations (Table A2.1; Figure A2.1) – long-term average (mean) 
over the period January 1972 – July 2021 (extracted from the file gwl_hpm.parquet, provided by 
HBRC). Note, some level data could not be used due to the absence of adequate bore information 
or ambiguous measurement datum. 

• Six (6) stream-flow observations (Table A2.2; Figure A2.2) – long-term average (median flow) 
over the period ~1970–2022 (extracted from the file HY_2223_HPlainsGaugingsAndFlows.xlsx 
provided by HBRC). 

• Six (6) surface-water–groundwater-exchange estimates (Table A2.3; Figure A2.3) – groundwater-
exchange estimates from Wilding (2018). 

See Hemmings et al. (in prep.) for a discussion on observation weighting and re-balancing. Consistent 
with the history-matching undertaken in Hemmings et al. (in prep.), three IES iterations were completed 
to condition parameters and provide posterior parameter ensembles for scenarios analyses. Note that 
Hemmings et al. (in prep.) explored the incorporation of tritium data in the history-matching effort for 
the prediction of groundwater age. While the work presented here is not focused toward tritium and 
groundwater age, the results of a preliminary and supplementary exploration of combined AEM and tritium 
are included (see Section 3.1.5). 

 
Figure 2.1 History-matching observation locations. Note that layer locations are in the modified model structure 

for the skytem-lays model and may differ from the layer locations for the skytem-k model and those 
in Hemmings et al. (in prep.). 
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2.4 Scenarios 

The scenarios investigated are the same as those presented in Hemmings et al. (in prep.). 

• Base: Continuation of current long-term average stresses (approximately aggregating the period 
1970–2022). 

• Dry: Reflecting a dry climate future where the recharge and stream inflow is decreased. Stresses 
were taken from a relatively dry historical period (July 2020 – July 2021) and extended as a steady-
state condition. 

• Wet: Reflecting a wet climate future where the recharge and stream inflow is increased. Stresses 
were taken from a relatively wet historical period (July 2009 – July 2011) and extended as a steady-
state condition. 

• Pump80: Where groundwater abstraction is reduced by 20%. 

• Pump120: Where groundwater abstraction is increased by 20%. 

Prior and posterior (after three iterations) parameter ensembles for each model version (skytem-k, 
skytem-lays, skytem-k-pc and skytem-lays-pc) were run through predictive flow and age simulations 
for the five scenarios. 

2.5 Data-Worth Assessment 

Data-worth analyses allow data of disparate types to be compared in terms of their ability to increase 
the reliability of model-based predictions. These analyses can then be used to inform data-collection 
strategies, highlighting which data-acquisition strategy provides the greatest return for investment. 
Similarly, the relative merits of making measurements at different locations and times can be assessed. 
The results offer useful insights even though they are based on approximate estimates for uncertainties 
(parameter and measurement uncertainty estimates) and the assumption of linear relationships implicit 
in the data-worth analysis (Moore and Doherty 2005; Dausman et al. 2010). 

This section uses data-worth analyses to explore the ability of SkyTEM-derived hydraulic conductivity 
estimates to reduce the uncertainty of different predictions using the Bridge Pā GW model. This ‘worth’ 
is compared with the ability of other existing data types in the area, namely groundwater levels (including 
current and historic wetland locations), stream flows and groundwater–surface-water-exchange 
measurements. This allows the worth of data to be considered within a realistic context where other 
data already exists. 

The requirements for a data-worth assessment are as follows: 

• A description of the uncertainty of model parameters (e.g. hydraulic conductivity, streambed 
conductivity, etc). These are based on a priori estimates of parameter uncertainty. 

• Calculated sensitivities of the prediction to the measurements, which are calculated with the model. 

• A description of the uncertainty of measurements used in the model, for example, groundwater 
levels, stream flows, groundwater–stream-exchange fluxes, SkyTEM-derived observations of 
hydraulic conductivity, etc. 

Because of these requirements, data-worth assessments can be undertaken both on models that are 
history-matched and those that are not. Typically, in our experience, the results do not differ significantly 
between prior and history-matched models. Ideally, the analyses are checked for both pre and post-
history-matched models, but, in this work, we have only explored data worth for the pre-history-matched 
model. 

The uncertainty of groundwater levels and flow data is based on estimates of current measurement 
accuracy: a standard error of 1 cm was adopted for groundwater levels and a 10% standard error was 
adopted for surface-water flow. These values were then adjusted using a propagation-of-error formula 
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to accommodate the fact that transient measurements were being used to provide an estimate of steady-
state observations. A propagation-of-error formula was also used to estimate the groundwater–surface-
water-exchange-flux standard errors. 

The analysis of data worth is somewhat sensitive to the estimated uncertainty of the observations. 
Despite efforts to assign realistic estimates of uncertainty, it is still possible that these are under- or over-
estimated – for example, that the uncertainty of flux estimates in this analysis are over-estimated or that 
the uncertainty of the groundwater-level measurements are under-estimated. 

The uncertainty of SkyTEM-derived observations of hydraulic conductivity is more involved and is a 
combination of: 

• The resistivity model error (i.e. the mis-fit between the forward-modelled voltage data from the 
resistivity model versus the measured voltage), estimated to have a standard error of 0.66 
(Rawlinson et al. [2021]). 

• The kriging interpolation errors (to interpolate between 1D resistivity model locations and a 3D 
model grid; resvar from Rawlinson [2023]). This has a scale-dependant error that has a mean of 
0.51 and a median of 0.47 and varies between 0.1 and 4.67 within the model domain. 

• The uncertainty in the relationship between resistivity and hydraulic conductivity, estimated to 
have a standard error of 0.54 in the log-log domain (Rawlinson 2023). 

Additional errors in the SkyTEM-derived analyses will relate to differences of scale between the model 
grid and the resistivity soundings, as well as uncertainties associated with the quality and location of 
lithological log data and hydraulic-conductivity estimates from pumping tests; these have been ignored 
in this analysis. 

The worth of the SkyTEM data compared to existing data is explored in two ways. Firstly, the case of 
having no observations available is considered. The exploration then describes the extent to which the 
addition of each current dataset on its own reduces the uncertainty of the prediction. Secondly, the case 
of all existing observations being available is considered. The exploration then describes the extent to 
which the removal of any dataset, one at a time, would increase the uncertainty of the prediction. 
Differing data-worth relationships between the first and second cases can occur if observation groups 
are highly correlated. 
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3.0 Results 

3.1 Regional Model Results 

3.1.1 Model Structure and Parameter Changes 

The regional model upgrades that utilise the AEM-derived (SkyTEM) data and interpretation (as introduced 
in Section 2.2.1) significantly alter the initial base-realisation model properties, relative to the TWOTW 
(geo) model version, detailed in Hemmings et al. (in prep.). As detailed in Section 2.2.1, the skytem-lays 
models also have altered model-layering structures. A visual comparison of geo and skytem-lays model 
structure is presented in Figures 3.1–3.3. A comparison of base-realisation model parameter changes 
is presented in Figures 3.4–3.9. For reference, a similar comparison between the skytem-k and geo models 
is presented in Appendix 1. 

Generally, the utilisation of the AEM data in the skytem models results in more granular variation in 
the base-realisation model properties; compare the more zonal base-realisation property variations in the 
left-hand (geo) plots in Figures 3.4–3.9 to the detailed variations (high spatial frequency) in the right-
hand plots (skytem-lays). For hydraulic conductivity (Figures 3.4 and 3.5) and the hillslope boundary 
conductance (Figure 3.6), base-realisation values span a greater range of parameter values for the 
skytem models than the geo model, and more cells are at the extreme (high and low) values. In some 
areas, the incorporation of AEM data significantly increased estimates of the hillslope boundary 
conductance (Figure 3.6). 

Base-realisation value ranges for streambed hydraulic conductivity and drain conductance were the 
same across the different models (due to the consistent scaling method applied [see Table 2.1]). 
As the geo model streambed hydraulic conductivity and drain conductance is derived from VK in layer 1 
(see Table 2.1), the distribution of relative high and low streambed hydraulic conductivity and drain 
conductance resemble each other (left-hand plots in Figures 3.8 and 3.9) and the ‘lay 1’ plot (left-hand 
plot, upper left) in Figure 3.5. Similarly, the relative distribution of relatively high and low streambed 
hydraulic conductivity and drain conductance for skytem models resemble each other (right-hand plots 
in Figures 3.8 and 3.9). In this instance, the values for streambed hydraulic conductivity and drain 
conductance where derived from processed CC and HK estimates from the AEM data in the upper 4 m 
(see Section 1.2.3 and Table 2.1), as such similarities can also be seen between the disposition of relative 
high and low values for skytem model streambed hydraulic conductivity and drain conductance and the 
‘lay 1’ VK plot (right-hand plot, upper left) in Figure 3.5. The relationship to estimated VK means that 
both model versions (geo and skytem) generally have higher streambed hydraulic conductivity and drain 
conductance over the unconfined portion. However, the skytem version has lower streambed hydraulic 
conductivity and drain conductance over a wider area, with the highest streambed hydraulic conductivity 
and drain conductance confined to along Ngaruroro River, upstream of Fernhill, and along Tutaekuri River, 
upstream of Waikohiki. 
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Figure 3.1 Layer bottom elevations (metres above sea level) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 

 
Figure 3.2 Layer bottom depths (metres) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 
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Figure 3.3 Layer bottom thickness (metres) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 

 
Figure 3.4 Base-realisation horizontal hydraulic conductivity (m/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 
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Figure 3.5 Base-realisation vertical hydraulic conductivity (m/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 

 
Figure 3.6 Base-realisation coastal general head boundary (GHB) conductance (m2/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 
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Figure 3.7 Base-realisation hillslope boundary general head boundary (GHB) conductance (m2/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-lays) models, with layer adjustment. 
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Figure 3.8 Base-realisation stream hydraulic conductivity (m/day) for the (left) original (TWOTW/geo) and (right) 

SkyTEM-informed (skytem-lays) models, with layer adjustment. 

 
Figure 3.9 Base-realisation drain conductances (m2/day) for the (left) original (TWOTW/geo) and (right) 

SkyTEM-informed (skytem-lays) models, with layer adjustment. 

3.1.2 Parameter Pre-Conditioning 

A comparison of the statistical descriptors (mean and standard deviation) of the model hydraulic 
conductivity parameter distributions, before and after pre-conditioning, is provided in Figures 3.10 and 
3.11 (skytem-k and skytem-k-precond) and in Figures 3.12 and 3.13 (skytem-lays and skytem-lays-
precond). Visual inspection of the ensemble mean hydraulic conductivity suggests very minimal change in 
the hydraulic conductivity fields through pre-conditioning (Figures 3.10 and 3.12). However, the mapped 
ensemble standard deviations do show significant differences after pre-conditioning (Figures 3.11 and 
3.13). Generally, pre-conditioning results in greatly reduced standard deviations, especially around cluster 
0 locations (high permeability; red circles in Figures 3.11 and 3.13). However, the use of only inequality 
constraints in the pre-conditioning results in non-gaussian distributions that may not be well represented 
by the standard deviation; this is likely to be reason why there are some increases in standard deviation 
in some locations. 
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Figure 3.10 Ensemble mean of prior log-transformed HK field for skytem-k-precond before (upper left) and after 
(upper right) pre-conditioning, with the difference between these (right). Identified orange and grey 
circles identify locations where pre-conditioning was undertaken: c0 = cluster 0 (high permeability); 
c23 = cluster 2 or cluster 3 (low permeability). 
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Figure 3.11 Ensemble standard deviations for prior log-transformed HK fields for skytem-k-precond before (upper 
left) and after (upper right) pre-conditioning, with the difference between these (right). Identified 
orange and grey circles identify locations where pre-conditioning was undertaken: c0 = cluster 0 (high 
permeability); c23 = cluster 2 or cluster 3 (low permeability). 
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Figure 3.12 Ensemble mean of log-transformed HK fields for skytem-lays-precond before (upper left) and after 
(upper right) pre-conditioning, with the difference between these (right). Identified orange and grey 
circles identify locations where pre-conditioning was undertaken: c0 = cluster 0 (high permeability); 
c23 = cluster 2 or cluster 3 (low permeability). 
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Figure 3.13 Ensemble standard deviation for log-transformed HK fields for skytem-lays-precond before (upper left) 
and after (upper right) pre-conditioning, with the difference between these (right). Identified orange and 
grey circles identify locations where pre-conditioning was undertaken: c0 = cluster 0 (high permeability); 
c23 = cluster 2 or cluster 3 (low permeability). 
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3.1.3 History-Matching 

For all model versions, the three history-matching iterations improved the overall ensemble fits to the 
observations data. Summary plots of the prior and posterior simulated ensembles relative to observed 
data values are presented in Figure 3.14 (for the history-matching effort with the geo model, after 
Hemmings et al. [in prep.]), Figure 3.15 (for the skytem-lays models) and Figure 3.16 (for the 
preconditioned skytem-lays-precond model). Note that the prior ensembles (grey bars) in Figure 3.16 
represent the pre-conditioned prior. Similar summary plots for the skytem-k models are provided in 
Appendix 3 (Figures A3.1 and A3.2). Prior and posterior simulated output distributions for individual 
observations are also provided in Appendix 3 (Section A3.2). 

The fits to individual observations vary for the different model versions. Most noticeable from Figures 3.14 
and 3.15 is that the posterior simulated outputs (blue bars) for surface-water–groundwater-exchange 
observations (E and F in Figure 3.15) for the skytem-lays model appear to better capture the observed 
values (accounting for observation noise; red bars) than the equivalent simulated outputs for the geo 
model version (E and F in Figure 3.14), albeit with greater apparent uncertainty in the outputs. Another 
notable difference between the skytem-lays and geo simulated outputs is clear in the cluster of higher 
water-level observations (over 125 m; I and H in both Figures 3.14 and 3.15). For these observations, 
the outputs for skytem-lays model version are generally lower than the equivalent outputs for the geo 
model version. 

Generally, the geo model struggled to fit water-level observations in the coastal, confined portion of the 
model domain (e.g. sites 1417, 1450 and 15001; see Appendix 1 in Hemmings et al. [in prep.]). In these 
regions, the fit to water-level observations mostly improve for the AEM-informed versions of the model 
(e.g. sites 1417, 1450 and 15001; plots BE, BG and BK in Section A3.2.3.1). However, in other areas, 
the history-matching of the geo model is more able to capture the observed water levels than the 
AEM-informed model versions, for example, for water-level observations around Brookvale Road, 
Havelock North (e.g. sites 16557 and 16611; EI and EK in Section A3.2.3.1). Here, while the posterior 
ensemble for the skytem-lays model largely captures observed values, generally the simulated output 
is greater than the observation value (see EI and EK in Section A3.2.3.1). For these sites, the geo 
model posterior generally fits the observations better (see Appendix 1 in Hemmings et al. [in prep.]). 
Significant discrepancies in observed water-level values between closely located sites might contribute 
to challenges fitting these data. For example, sites 16556 and 16557 are closely located and in the 
same model layer, but have water-level observation discrepancies of up to 1 m. The presence of such 
discrepancies provides additional justification for pursuing ‘under-fitting’ in the history-matching efforts 
here. Another example is water-level observations of site 16202, at approximately 11 m depth, and 
the closely located site 16203, at approximately 22 m depth (DE and DF in Sections A3.2.1.1, A3.2.2.1, 
A3.2.3.1 and A3.2.4.1). The water-level observations at these two sites suggest a very strong upward 
head gradient of greater than 0.5 and a localised deep water table (approximately 9 m deep) or low head 
in the shallow system. These data are very difficult for the model to reproduce – they may reflect a very 
localised hydrogeological feature or even an erroneous datum for the measurements. 

The progress of the iterative ensemble history-matching iterations also indicates some challenges 
converging on a posterior parameter ensemble that minimises the mis-fit between observations and 
simulated outputs. This is indicated by the algorithm resorting to ‘partial upgrades’ for a number of 
iterations for all model version history-matching exercises. Partial upgrades are undertaken where 
the upgrade of the parameter ensemble, for a given iteration, fails to meet mean objective function 
improvement criteria (commonly, this is a reduction in the mean objective function across the ensemble). 
In this instance, parameter upgrades are only applied to realisations that do meet the objective function 
improvement criteria. It is likely that the inequality observation on water levels, introduced as a pragmatic 
device to encourage movement of the ensemble toward improved numerical stability, created some strong 
non-linearity between parameter values and the objective function, as the inequality is contravened. 
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Figure 3.14 Summary of history-matching for the geo model, after Hemmings et al. [in prep.]. Left-hand plots 

(A, C, E, G) are simulated values versus observed values. Right-hand plots (B, D, F, H) are residual 
values (simulated minus observed) for each observed value. Grey bars represent prior simulated 
values. Blue bars are posterior simulated values with respect to the same observations. Red bars 
are the observed values with the inclusion of ‘observation noise’. The top two plots (A and B) relate 
to inequality observations that surface-layer heads should always be below 350 m above sea level, 
which is a pragmatic observation to try to reduce spurious head spikes in the ensembles. 
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Figure 3.15 Summary of history-matching for the skytem-lays model. Left-hand plots (A, C, E, G) are simulated 

values versus observed values. Right-hand plots (B, D, F, H) are residual values (simulated minus 
observed) for each observed value. Grey bars represent prior simulated values. Blue bars are 
posterior simulated values with respect to the same observations. Red bars are the observed 
values with the inclusion of ‘observation noise’. The top two plots (A and B) relate to inequality 
observations that surface-layer heads should always be below 350 m above sea level, which is a 
pragmatic observation to try to reduce spurious head spikes in the ensembles. 



Confidential 2025  

 

36 GNS Science Consultancy Report 2025/06 
 

 
Figure 3.16 Summary of model history-matching for the skytem-lays-precond model. Left-hand plots (A, C, E, G) 

are simulated values versus observed values. Right-hand plots (B, D, F, H) are residual values 
(simulated minus observed) for each observed value. Grey bars represent prior simulated values. 
Blue bars are posterior simulated values with respect to the same observations. Red bars are 
the observed values with the inclusion of ‘observation noise’. The top two plots (A and B) relate to 
inequality observations that surface-layer heads should always be below 350 m above sea level, 
which is a pragmatic observation to try to reduce spurious head spikes in the ensembles. 
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3.1.4 Predictive Changes 

The subsequent sections detail the propagation of prior and posterior parameter ensembles through 
predictive model scenarios. Note that the use of a different numerical simulation for each predictive 
scenario, as well as for the history-matching, results in different patterns of model failure. As such, 
prior predictive ensembles may contain fewer members than posterior predictive ensembles, and the 
number of successful realisations may vary between scenarios. 

3.1.4.1 Base Scenario 

Base scenario prior and posterior distributions for specific predictions are shown in Figures 3.17–3.22. 
General mapped overviews of some prediction related simulated outputs and the differences in prior and 
posterior ensemble mean, median and standard deviation are provided in Section A4.1. 

The AEM-informed changes to the model increase both the magnitude and uncertainty of the prior 
prediction of net inflow from the hillslope boundaries (compare lower distributions for skytem models to 
the geo model reference in Figure 3.17A). The geo model median value of prior prediction distribution for 
boundary inflow (indicated by a white line on the boxplot in the lower section of the probability distributions 
plot [labelled base-geo] in Figure 3.17A) is 7.2 m3s-1. For all skytem models, the prior prediction median 
increases to over 20 m3s-1. The prior standard deviation for this prediction approximately doubles for the 
skytem models relative to the geo model (from ~21 to over 40 m3s-1). The extra boundary inflow predicted 
in the skytem model versions is balanced by increases in predicted exchange from groundwater to surface 
water (Figure 3.17B) and increases in the predicted offshore groundwater flow (Figure 3.17C). 

After history-matching, the posterior distributions for boundary inflow and surface-water exchange 
predictions (upper plots in Figure 3.17A and B) are all reduced, in magnitude and apparent uncertainty, 
relative to the prior distributions. Posterior groundwater–surface-water-exchange prediction distributions 
for the skytem-k models move closer to the geo model posterior, albeit with greater predictive uncertainty 
(Figure 3.17B). The skytem-lays-pc model posterior also results in a similar posterior median to the geo 
model, although also with greater apparent uncertainty (standard deviation of 13 m3s-1 relative to 3.5 m3s-1 
for the geo model). For this model version, more of the proportion of the additional boundary inflow 
is predicted to discharge offshore through the groundwater system; the posterior median prediction 
for skytem-lays-pc offshore groundwater discharge is 9.5 m3s-1, compared to the posterior median 
groundwater–surface-water-exchange prediction of 7 m3s-1. The skytem-lays model version, without 
pre-conditioning, maintains an elevated groundwater–surface-water-exchange prediction in the posterior 
(purple plot in Figure 3.17B), with the distribution median at over 11 m3s-1 surface-water gain and relatively 
low offshore flow (posterior median of 4.4 m3s-1). 

For these budget component predictions, notwithstanding the significant differences between the 
prediction distributions for the different models, median values for each skytem model posterior 
distribution fall well within the posterior distributions for each other skytem model. The geo model median 
values also always fall within all other model distributions. However, the geo model distributions do not 
always encompass the skytem model median values. 
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Figure 3.17 Budgetary component base scenario prediction distributions for the geo, skytem-k and skytem-lays 

models, including pre-conditioned versions (-pc). (A) Net flow across hillslope boundaries (to [positive] 
or from [negative] simulated domain). (B) Net groundwater–surface-water exchange to groundwater 
(positive) or surface water (negative). Note: this includes groundwater exchange with the explicit routed 
stream network (SFR package) and flux to model drains (DRN package). (C) Net offshore groundwater 
flow (positive values are net offshore flow). Violin plots represent kernel density estimation of prediction 
distributions; inner boxplots indicate quartiles with whiskers extending to 1.5 x the interquartile range. 
Models shown: geo (reference model; grey), k (parameter fields updated; blue), k-pc (parameter fields 
updated and preconditioning applied; green), lays (layers and parameter fields updated; purple), 
lays-pc (layers and parameter fields updated and pre-conditioning applied; pink). Note: x-axes are 
clipped to the maximum extent of the posterior distributions. 

For the predictions that relate to the apportionment of offshore flow within zones, the AEM data informs 
a prediction of relatively little offshore groundwater flow in the southern zone (Figures 3.18D and 3.19D). 
This is even indicated in the prior distributions, although the structural changes in the skytem-lays model 
versions do support greater proportion than the skytem-k versions. Low offshore flow prediction in the 
southern zone for the skytem models is commensurate with a prediction of greater offshore flow through 
the middle zone (Figures 3.18C and 3.19C) and marks a clear difference from geo model predictions, 
which suggest more even distribution of offshore flow and increased prediction uncertainty, especially 
for the southern zone. 
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Figure 3.18 Fractional zonal groundwater offshore discharge prediction distributions for the base scenario 

for the geo, skytem-k and skytem-lays models, including pre-conditioned versions (-pc). (A) Total 
discharge and equivalent to Figure 3.19A. (B–D) Zonal components in the north, middle and south 
zones, respectively (as shown on inset maps). Note: x-axes are clipped to the maximum extent 
of the posterior distributions. 
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Figure 3.19 Net zonal groundwater offshore discharge prediction distributions for the base scenario for the geo, 

skytem-k and skytem-lays models, including pre-conditioned versions (-pc). (A) Total discharge. 
(B–D) Zonal components in the north, middle and south zones, respectively (as shown on inset maps). 
Note that the polarity of the plots is opposite to Figure 3.17C (positive values indicate offshore flow); 
as such, (A) is the additive inverse of Figure 3.17C. Note: x-axes are clipped to the maximum extent 
of the posterior distributions. 
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For the local groundwater–surface-water-exchange prediction along Ngaruroro River, upstream of Roys 
Hills (grey plots in Figure 3.20A), the geo model prior and posterior distributions indicate minor river loss: 
both prior and posterior distribution median values are at approximately 0.5 m3s-1, and the middle two 
quartiles (majority of the distribution) are between 0 and 3.2 (prior) and 0.1 and 1.0 (posterior). For the 
skytem model versions, the prediction distributions move toward favouring river gain from groundwater. 
The maximum median value is predicted with the skytem-lays-pc model version (gain of 3.7 m3s-1). 

The in-stream flow predictions are unique in that there are also history-matching observations at these 
locations. As such, the violin plots in Figure 3.20B–D are equivalent to plots K, G and A, respectively, 
in Sections A3.2.1.2, A3.2.2.2, A3.2.3.2 and A3.2.4.2 (with a unit adjustment to m3s-1). As the predictions 
form part of the history-matching dataset, the apparent prediction uncertainty is significantly reduced 
by history-matching. Posterior distribution standard deviations are 70–90% lower than the respective 
prior distribution standard deviations, which were initially very high. However, few of the posterior 
distributions are well centred on the observation values. Despite the reduction in posterior prediction 
standard deviations, the posterior prediction uncertainty remains high for the skytem model version. 
However, this uncertainty allows predictive distributions for all of the skytem models to comfortably 
encompass all of the observation plus noise (red bars in Figure 3.20B–D). In contrast, the geo model 
posterior distributions do not encompass the observation-plus-noise values as effectively. 

 
Figure 3.20 Ngaruroro River groundwater exchange between Maraekakaho and Roys Hill (A) and in-stream flow 

(B–D) base scenario prediction distributions for the geo, skytem-k and skytem-lays models, including 
pre-conditioned versions (-pc). Positive values in (A) indicate simulated surface-water gain along 
the river reach (explicit SFR package exchange). The red bars in (B–D) represent the realisations 
of observations plus noise (note that the Ngaruroro River exchange at this location was not a history-
matching observation). Note: x-axes are clipped to the maximum extent of the posterior distributions. 
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For the eight water-level predictions, posterior distributions demonstrate significant reductions in 
prediction uncertainty for all model versions (Figures 3.21 and 3.22). Generally, skytem model version 
prediction distributions are in good agreement with each other. However there is often reasonable 
discrepancy between all skytem model distribution centres and the geo model distribution centres 
(e.g. at sites 5970, 1865, 10796 and 5368; Figure 3.21A, C, D and Figure 3.22A, respectively). For these 
water-level predictions, the apparent posterior uncertainty of skytem version predictions appears to be 
similar or reduced, relative to the geo model uncertainty. 

 
Figure 3.21 Groundwater-level prediction distributions for the base scenario for the geo, skytem-k and skytem-

lays models, including pre-conditioned versions (-pc). The red text in the inset maps indicates 
the model layer for the simulated output – this can differ between the geo and skytem-lays model 
versions due to changes in the model structure. Note: x-axes are clipped to the maximum extent 
of the posterior distributions. 
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Figure 3.22 Further groundwater-level prediction distributions for the base scenario for the geo, skytem-k 

and skytem-lays models, including pre-conditioned versions (-pc). Red text in inset maps indicates 
the model layer for the simulated output – this can differ between the geo and skytem-lays model 
versions due to changes in the model structure. Note: x-axes are clipped to the maximum extent of 
the posterior distributions. 

3.1.4.2 Scenario Difference Predictions 

Scenario analysis (see Section 2.4) included simulation of predictive model realisations for dry, wet, 
increased pumping and decreased pumping conditions. The results for these scenarios are expressed 
as absolute predictions for the scenarios and difference predictions relative to the base scenario. 
The dry climate scenario results for the skytem-lays model versions are presented in Figures 3.23–3.28. 
See Appendix 4 for results associated with the other scenarios and the skytem-k model. 

Budget predictions for the dry scenario (Figure 3.23) include a small increase in predicted flow from 
hillslope boundaries (Figure 3.23A) for all model versions. The predicted increase is higher for the skytem 
model versions than the geo model and with greater apparent uncertainty. However, the posterior 
prediction distribution is mostly below a 0.1 m3s-1 increase. The dry scenario prediction for offshore flow 
(Figure 3.23C) indicates a similar magnitude of change. 

The dry scenario does not noticeably alter the zonal partitioning of the offshore flow; the change in the 
fraction of offshore flow predicted for each zone is close to zero (Figure 3.24). Predicted increases in 
each zone are approximately proportional to the base scenario flow (Figure 3.25). 

For the prediction of surface-water–groundwater exchange (Figure 3.23B), the dry scenario prediction 
is for reduced flow from groundwater toward surface water. The predictive distributions for change 
in exchange are similar for the geo and skytem-lays model versions (approximately 2 m3s-1 reduction in 
surface-water gain). However, the distribution median for the skytem-lays-pc predictive distribution 
(pink in Figure 3.23B), and both skytem-k model versions (Section A4.3.1), is shifted to less reduction 
in groundwater flux to surface water for the dry scenario (toward 1 m3s-1). 
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Along Ngaruroro River between Maraekakho and Roys Hill, the prediction distributions are reasonably 
even around no change in gain (or loss) for the dry scenario (Figure 3.26A). However, the skytem-lays-
pc model does indicate potential for decreased gain (or increased loss), up to 1 m3s-1. 

For all stream-flow predictions, the models indicate reductions in flow for the dry scenario (Figure 3.26B–
D). The change predictions are significantly affected by history-matching – the posterior prediction 
distributions are reduced in magnitude (less reduction in flow) and apparent uncertainty for all model 
versions relative to the priors. Posterior predictions for change in flow for the dry scenario are similar 
across all model versions. However, the skytem-lays-pc and both skytem-k models predict that stream 
flow on Karamu River at the floodgates is marginally less affected by the dry scenario (less reduction 
in flow; Figure 3.26D and Section A4.3.1). 

Similarly, the prediction of the effect of the dry scenario on water levels (i.e. change in level relative 
to base) is similar across the different model versions. For all sites, the predictions are for reduced 
water levels in the dry scenario (Figures 3.27 and 3.28). Site 5368 shows the greatest discrepancy in 
the predicted dry scenario effect between the geo and skytem model versions (Figure 3.28A). For sites 
5970, 4837 and 10796, the skytem-lays and skytem-lays-pc posterior predictions of change in level are 
much reduced relative to the prior, and the posterior distributions align with the geo model posterior 
(Figure 3.27A, B and D). 

 
Figure 3.23 Comparison between base and dry scenario budget component predictions for the geo and 

skytem-lays models. Left-hand plots in each panel show prediction distributions for the base (upper 
three plots) and dry scenarios (lower three plots). Right-hand plots show the change predictions, 
calculated as dry – base for each realisation. (A) Net flow across hillslope boundaries (to [positive] 
or from [negative] simulated domain). (B) Net groundwater–surface-water exchange to groundwater 
(positive) or surface water (negative). Note that this includes groundwater exchange with the explicit, 
routed, stream network (SFR package) and flux to model drains (DRN package). (C) Net offshore 
groundwater flow (positive values are net offshore flow). Violin plots represent kernel density 
estimation of prediction distributions; inner boxplots indicate quartiles with whiskers extending to 
1.5 x the interquartile range. Models shown: geo (reference model; grey), lays (layers and parameter 
fields updated; purple), lays-pc (layers and parameter fields updated and pre-conditioning applied; 
pink). Note: x-axes are clipped to the maximum extent of the posterior distributions. 
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Figure 3.24 Comparison between base and dry scenarios for the fractional zonal groundwater offshore 

discharge prediction for the geo and skytem-lays models. Left-hand plots in each panel show the 
prediction distribution for the base (upper three plots) and dry scenarios (lower three plots). 
Lower right-hand plots show the change predictions, calculated as dry – base for each realisation. 
(A) Total discharge and equivalent to Figure 3.25A. (B–D) Zonal components in north, middle and 
south zones, respectively (as shown on inset maps). Note: x-axes are clipped to the maximum 
extent of the posterior distributions. 
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Figure 3.25 Comparison between base and dry scenarios for the net zonal groundwater offshore discharge 

prediction, for the geo and skytem-lays models. Left-hand plots in each panel show the prediction 
distribution for the base (upper three plots) and dry scenarios (lower three plots). Lower right-hand 
plots show the change predictions, calculated as dry – base for each realisation. (A) Total discharge 
and equivalent to Figure 3.23A, showing net decrease in flow offshore. (B–D) Zonal components in 
the north, middle and south zones, respectively (as shown on inset maps). Note: x-axes are clipped 
to the maximum extent of the posterior distributions. 
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Figure 3.26 Comparison between the base and dry scenarios for Ngaruroro River groundwater exchange 

between Maraekakaho and Roys Hill (A) and in-stream flow (B–D) predictions, for the geo and 
skytem-lays models. Left-hand plots in each panel show the prediction distribution for the base 
(upper three plots) and dry scenarios (lower three plots). Right-hand plots show the change 
predictions, calculated as dry – base for each realisation. Positive values in (A) indicate simulated 
surface-water gain along the river reach (explicit SFR package exchange). Positive values in (A) can 
mean increased river loss or decreased river gain. Note that, on average in the geo model, this stretch 
of the model was a losing reach, and, in the skytem-lays models, became a gaining reach. Red bars 
in (B–D) represent the realisations of observations plus noise (note that the Ngaruroro River exchange 
at this location was not a history-matching observation). Note: x-axes are clipped to the maximum 
extent of the posterior distributions. 



Confidential 2025  

 

48 GNS Science Consultancy Report 2025/06 
 

 
Figure 3.27 Comparison between the base and dry scenarios for groundwater-level predictions for the base 

scenario for the geo and skytem-lays models. Left-hand plots in each panel show the prediction 
distribution for the base (upper three plots) and dry scenarios (lower three plots). Lower right-hand 
plots show the change predictions, calculated as dry – base for each realisation. The red text in the 
inset maps indicates the model layer for the simulated output – this can differ between the geo and 
skytem-lays model versions due to changes in the model structure. Note: x-axes are clipped to the 
maximum extent of the posterior distributions. 
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Figure 3.28 Comparison between the base and dry scenarios for further groundwater-level predictions for the 

base scenario for the geo and skytem-lays models. Left-hand plots in each panel show the prediction 
distribution for the base (upper three plots) and dry scenarios (lower three plots). Lower right-hand 
plots show the change predictions, calculated as dry – base for each realisation. The red text in the 
inset maps indicates the model layer for the simulated output – this can differ between the geo and 
skytem-lays model versions due to changes in the model structure. Note: x-axes are clipped to the 
maximum extent of the posterior distributions. 
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3.1.5 Preliminary Results when History-Matching to Tritium 

For further discussion, the base scenario for the skytem-lays model predictions with and without tritium 
in history-matching, and with and without pre-conditioning, are presented in Figures 3.29–3.39. These 
include age predictions and porosity pre-conditioning (Hemmings et al., in prep.). 

3.1.5.1 Equivalent Flow Model Predictions 

 
Figure 3.29 Budgetary component base scenario prediction distributions for the geo and skytem-lays models, 

with and without history-matching to tritium (-trit). (A) Net flow across hillslope boundaries (to 
[positive] or from [negative] simulated domain). (B) Net groundwater–surface-water exchange to 
groundwater (positive) or surface water (negative). Note that this includes groundwater exchange 
with the explicit routed stream network (SFR package) and flux to model drains (DRN package). 
(C) Net offshore groundwater flow ([positive values are net offshore flow). Violin plots represent 
kernel density estimation of prediction distributions; inner boxplots indicate quartiles with whiskers 
extending to 1.5 x the interquartile range. Models shown: geo (reference model; grey), geo-trit 
(including history matching to tritium; yellow-green), lays (layers and parameter fields updated; 
purple), lays-pc (layers and parameter fields updated and pre-conditioning applied; pink), lays-trit 
(layers and parameter fields updated, posterior history matched to tritium; brown), lays-trit-pc (layers 
and parameter fields updated, pre-conditioning applied and tritium included in history-matching; 
cyan). Note: x-axes are clipped to the maximum extent of the posterior distributions. 
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Figure 3.30 Fractional zonal groundwater offshore discharge prediction distributions for the base scenario for 

the geo and skytem-lays models, with and without tritium in history matching. (A) Total discharge 
and equivalent to Figure 3.31A. (B–D) Zonal components in the north, middle and south zones, 
respectively (as shown on inset maps). Note: x-axes are clipped to the maximum extent of the 
posterior distributions. 
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Figure 3.31 Net zonal groundwater offshore discharge prediction distributions for the base scenario for the 

geo and skytem-lays models, with and without tritium in history-matching. (A) Total discharge. 
(B–D) Zonal component in the north, middle and south zones, respectively (as shown on inset maps). 
Note that the polarity of the plots is opposite to Figure 3.29C (positive values indicate offshore flow); 
as such, (A) is the additive inverse of Figure 3.29C. Note: x-axes are clipped to the maximum extent 
of the posterior distributions. 
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Figure 3.32 Ngaruroro River groundwater exchange between Maraekakaho and Roys Hill (A) and in-stream 

flow (B–D) base scenario prediction distributions for the base scenario for the geo and skytem-lays 
models, with and without tritium in history-matching. Positive values in (A) indicate simulated 
surface-water gain along the river reach (explicit SFR package exchange). The red bars in (B–D) 
represent the realisations of observations plus noise (note that the Ngaruroro River exchange at 
this location was not a history-matching observation). Note: x-axes are clipped to the maximum 
extent of the posterior distributions. 
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Figure 3.33 Groundwater-level prediction distributions for the base scenario for the geo and skytem-lays models, 

with and without tritium in history-matching. The red text in the inset maps indicates the model layer 
for the simulated output – this can differ between the geo and skytem-lays model versions due to 
changes in the model structure. Note: x-axes are clipped to the maximum extent of the posterior 
distributions. 
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Figure 3.34 Further groundwater-level prediction distributions for the base scenario for the geo and skytem-lays 

models, with and without tritium in history-matching. The red text in the inset maps indicates 
the model layer for the simulated output – this can differ between the geo and skytem-lays model 
versions due to changes in the model structure. Note: x-axes are clipped to the maximum extent 
of the posterior distributions. 
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3.1.5.2 Additional Age Predictions 

 
Figure 3.35 Municipal-well-site median age predictions (P50) for the base scenario for the geo and skytem-lays 

models, with and without tritium in history-matching. The dashed black line is the lumped parameter 
model estimate of median age and the blue-shaded area is the associated broad age bin 
(Morgenstern et al. 2018; Morgenstern 2021) (note that there are two estimates for site 16167). 
The red text in the inset maps indicates the model layer for the simulated output – this can differ 
between the geo and skytem-lays model versions due to changes in the model structure. Note: 
x-axes are clipped to the maximum extent of the posterior distributions. 
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Figure 3.36 Municipal-well-sites fifth age percentile prediction (P5) for the base scenario for the geo and 

skytem-lays models, with and without tritium in history-matching. The dashed black line is the 
lumped parameter model estimate of P5 and the blue-shaded area is the associated broad age 
bin (Morgenstern et al. 2018; Morgenstern 2021) (note that there are two estimates for site 16167). 
The red text in the inset maps indicates the model layer for the simulated output – this can differ 
between the geo and skytem-lays model versions due to changes in the model structure. Note: 
x-axes are clipped to the maximum extent of the posterior distributions. 
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Figure 3.37 Prediction of fraction of water younger than two years at municipal well sites for the base scenario 

for the geo and skytem-lays models, with and without tritium in history-matching. The dashed black 
line is the fraction of young water derived from the lumped parameter model estimate (Morgenstern 
et al. 2018; Morgenstern 2021) (note that there are two estimates for site 16167). The red text in the 
inset maps indicates the model layer for the simulated output – this can differ between the geo and 
skytem-lays model versions due to changes in the model structure. Note: x-axes are clipped to the 
maximum extent of the posterior distributions. 
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Figure 3.38 Prediction of fraction of water younger than one year at municipal well sites for the base scenario for 

the geo and skytem-lays models, with and without tritium in history-matching. The dashed black line 
is the fraction of young water derived from the lumped parameter model estimate (Morgenstern et al. 
2018; Morgenstern 2021) (note that there are two estimates for site 16167, and that the estimate for 
3253 is zero). The red text in the inset maps indicates the model layer for the simulated output – this 
can differ between the geo and skytem-lays model versions due to changes in the model structure. 
Note: x-axes are clipped to the maximum extent of the posterior distributions. 
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Figure 3.39 Prediction of fraction of water younger than 30 days at municipal well sites for the base scenario for 

the geo and skytem-lays models, with and without tritium in history-matching. The dashed black line 
is the fraction of young water derived from the lumped parameter model estimate (Morgenstern et al. 
2018; Morgenstern 2021) (note that there are two estimates for site 16167) – these estimates place 
the young fraction very close to zero for all sites. The red text in the inset maps indicates the model 
layer for the simulated output – this can differ between the geo and skytem-lays model versions due 
to changes in the model structure. Note: x-axes are clipped to the maximum extent of the posterior 
distributions. 
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3.2 Data-Worth Assessment 

Using the Bridge Pā model, an exploration was undertaken on the relative worth of existing observation 
data in terms of the extent to which these informed four selected predictions, as discussed below 
(see also Section 1.3.2 for the list of predictions). The four selected predictions serve as exemplars of 
predictions for which aquifer structure and parameter knowledge acquired through AEM data are likely 
to be of importance. If other predictions are of interest, the analysis can be repeated in future work. 

Five observation data groups were used, as listed below: 

• Historical groundwater-level observations throughout the model domain. 

• Stream flow observations in Paritua Stream. 

• Stream–groundwater exchange flux data along Paritua Stream. 

• Stream–groundwater exchange flux data along Ngaruroro River. 

• Historical wetland locations (from soil data maps). 

• SkyTEM-informed hydraulic conductivity estimates (‘AEM data’). 

The data-worth analysis explored the relative worth of each data group in two ways; firstly, the extent 
to which history-matching to a specific data group reduced the prior uncertainty of a prediction; and, 
secondly, the extent to which the posterior uncertainty would increase if the same data group was 
removed from the history-matching dataset. Assessing the two approaches together is informative. 
Where the results are similar, this indicates that there is insufficient prediction-relevant information 
across the history-matching dataset. If results differ, this indicates redundancy in the history-matching 
dataset, caused by correlation in the prediction-relevant information found in data groups. 

Prediction 1: Groundwater–Stream-Exchange Fluxes in Paritua Stream along the Losing Reach 
during a Dry Year (SP8) 

History-matching to all available data was estimated to reduce the uncertainty of this prediction 
of groundwater–stream exchange along the losing reach in Paritua Stream by more than 99.5%, that is, 
the posterior uncertainty is 0.05% of the prior uncertainty. 

The data-worth analysis showed that a history-matching dataset comprising either only AEM data 
or groundwater–stream exchange flux data would reduce the prior uncertainty of this prediction by 
approximately 30% (Figure 3.40). A history-matching dataset comprising groundwater levels or Paritua 
Stream flow data would reduce the prior uncertainty by 25% and 7%, respectively. The remaining data 
groups made no significant difference to the calculated prior uncertainty. 

In contrast, assuming that all existing history-matching data was available, then removing the Paritua 
Stream – groundwater flux data group would effectively double the posterior uncertainty. The removal 
of other data groups from the history-matching dataset had no significant impact on the posterior 
uncertainty, indicating that there is significant correlation in the prediction-relevant information found in 
the remaining data groups. 

Prediction 2: Groundwater Level at Well 15005 during a Dry Year (SP8) 

History-matching to all available data was again estimated to reduce the uncertainty of predicted 
groundwater level in Well 15005 by more than 97.5% of the prior uncertainty. 

The data-worth analysis showed that history-matching to groundwater-level data would reduce the prior 
uncertainty by 47%. Both AEM data or Ngaruroro River groundwater–surface-water-exchange fluxes in 
the minor and major recharge zones reduced the prior uncertainty of this prediction by approximately 
20% (Figure 3.41). Other data would not inform this prediction to any significant extent. 
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In contrast, removal of the groundwater-level data group from the full history-matching dataset doubled 
the posterior uncertainty, indicating the unique prediction-relevant information in this data group. 
The removal of all other data groups produced negligible changes in the posterior uncertainty, indicating 
that any relevant information in these data groups was highly correlated with existing data. 

Prediction 3: Paritua Stream Flow at Bridge Pā during a Dry Year (SP8) 

History-matching to all available data was estimated to reduce the prior uncertainty of the prediction of 
Paritua Stream flow at Bridge Pā during the border dyke irrigation period to approximately 95%. 

Data-worth analysis showed that a history-matching dataset comprising either AEM data, groundwater-
level data, Paritua streamflow data or Paritua groundwater–surface-water-exchange flux data would 
each reduce the prior uncertainty of the prediction from 22 to 27%, respectively (Figure 3.42). Other data 
groups would not inform this prediction to any significant extent. 

Removal of the Paritua Stream flow data from an otherwise full history-matching dataset would almost 
double the posterior uncertainty, indicating the unique prediction-salient information in this dataset. 
Removing Paritua Stream – groundwater-exchange flux data would increase the posterior uncertainty by 
approximately 8%. Removing the AEM data and groundwater-level data would increase the posterior 
uncertainty by approximately 4%. This indicates that only Paritua Stream flow data has unique prediction-
relevant information, while additional information is somewhat correlated in the other data groups. 

Prediction 4: Surface-Water–Groundwater Flux Aquifer in the Major Recharge Area between 
Roys Hill and Fernhill during a Dry Year (SP8) 

History-matching to all available data was estimated to reduce the prior uncertainty of the prediction 
of the flux of water from Ngaruroro River into the aquifer in the area between Roys Hill and Fernhill 
during a dry stress period by 95%. Recall that Ngaruroro River is represented as a GHB boundary 
(see Section 2.2.2), with an assumed head elevation and estimated (uncertain) conductance. 

The analysis shows that a history-matching dataset comprising groundwater–surface-water flux in the 
major recharge zone provides the greatest reduction in the prior uncertainty of this prediction by 38% 
(Figure 3.43). If groundwater levels or AEM data are acquired, each dataset would reduce the uncertainty 
of the prediction by 27% and 23%, respectively. The Paritua Stream – groundwater-exchange flux data 
would reduce the uncertainty by 6%. Other data could reduce this uncertainty by less than 4%. 

Removal of the groundwater–surface-water flux information for the major recharge zone from an 
otherwise full history-matching dataset would increase the posterior uncertainty by approximately 
32%. Removing groundwater-level data would increase the posterior uncertainty by 30%. Removing 
AEM data from the dataset would increase the uncertainty by 31%. This indicates that there is unique 
prediction-relevant information in each of these datasets. 
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Figure 3.40 Paritua Stream losing reach prediction data-worth results, where the relative worth of different 

datasets is described in the context of a particular prediction, for example, the Paritua Stream losses 
along the defined losing reach. The figure depicts the reduction in uncertainty due to adding a dataset 
when no other data are available (orange) and the increase in uncertainty due to removing data but 
retaining all other datasets (grey). The y-axis describes the relative change in the prior uncertainty 
(orange) or posterior uncertainty (grey). 

 
Figure 3.41 Groundwater level at well 15005 prediction data-worth, where the relative worth of different datasets 

is described in the context of a particular prediction, for example, the groundwater levels at well 
15005. The figure depicts the reduction in prior uncertainty due to adding a dataset when no other 
data are available (orange) and the increase in posterior uncertainty due to removing data but 
retaining all other data sets (grey). The y-axis describes the relative change in the prior uncertainty 
(orange) or posterior uncertainty (grey). 
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Figure 3.42 Stream flow at Bridge Pā prediction data-worth, where the relative worth of different datasets is 

described in the context of a particular prediction, for example, the Paritua Stream flow at Bride Pā. 
The figure depicts the reduction in prior uncertainty due to adding a dataset when no other data are 
available (orange) and the increase in posterior uncertainty due to removing data but retaining all 
other datasets (grey). The y-axis describes the relative change in the prior uncertainty (orange) 
or posterior uncertainty (grey). 

 
Figure 3.43 Groundwater–surface-water exchange in the minor recharge zone prediction data-worth, where the 

relative worth of different datasets is described in the context of a particular prediction, for example, 
the flow along the major recharge zone between Roys Hill and Fernhill. The figure depicts the reduction 
in prior uncertainty due to adding a dataset when no other data are available (orange) and the increase 
in posterior uncertainty due to removing data but retaining all other data sets (grey). The y-axis 
describes the relative change in the prior uncertainty (orange) or posterior uncertainty (grey). 
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4.0 Discussion 
Within the Heretaunga Plains, AEM data provided detail on hydrogeological structure, aquifer system 
boundaries and the distribution of hydraulic properties with a broader three-dimensional coverage 
than can currently be achieved through other methods. In this study, we have explored both approaches 
for incorporating these data within numerical groundwater models and the value of this information 
(derived from SkyTEM data processing and modelling) in numerical groundwater model predictions. 

SkyTEM datasets are used to create resistivity models. Resistivity models can be developed from a 
large number of different types of instruments (both airborne and ground-based) with different depth 
penetrations, resolutions and sensitivities. The workflow presented in this report has been specifically 
targeted at AEM that collect datasets over large areas. While the workflow and results presented may be 
relevant to resistivity models developed from systems other than SkyTEM, only SkyTEM data has been 
utilised within this assessment. 

The type of geology, lithology and freshness/salinity of the groundwater impacts the relationship of 
the resistivity model(s) to hydraulic conductivity. The area investigated is a primarily fresh groundwater 
resource hosted within unconsolidated sediments where hydraulic conductivity is strongly controlled 
by the degree of clay versus gravel content. See Rawlinson (2023) for further discussion on the linear 
relationship between hydraulic conductivity and resistivity found within the Heretaunga Plains. 

Herein, a number of prediction types and methods were explored to assess the value of AEM data 
within a numerical groundwater modelling context. The AEM data was used to inform numerical model 
parameter values, aquifer structure and the uncertainty of these properties. The value of the AEM data 
was explored, somewhat quantitatively, in terms of changes to regional model predictions (with the 
Heretaunga GW model). The scripts that execute these developments and experiments have been 
provided as digital datasets to HBRC. The value of the AEM data was also formally explored, more 
quantitatively, using a data-worth analysis in the context of more local predictions simulated using a 
local model (Bridge Pā GW model). 

The magnitude of the impact of the AEM-informed model changes on specific model predictions varies 
for different prediction types and locations within the aquifer system. Many regional model predictions 
(and uncertainty distributions) were significantly modified after the inclusion of AEM data in both the 
model, parameterisation and construction. However, depending on how the prior parameter distribution 
was defined, the predictive uncertainty was not necessarily reduced. This, and the fact that AEM-
informed parameters show much more variation and span than originally reflected in the original model 
parameter uncertainty definitions, provides an indication that the previous definition of prior parameter 
uncertainty may under-represent the true uncertainty in individual parameter values (particularly model 
domain boundary conditions). 

The AEM data appears to strongly inform the spatial apportionment of offshore groundwater flow. 
The inclusion of AEM data in the regional model also raises conceptual questions about the relative 
contributions of hillslope inflows to the regional groundwater budget, with downstream implications 
for other budgetary components. The results indicate that there would be significant value in exploring 
the collection of additional data that might provide improved definition of the hillslope contribution 
volumes to the Heretaunga Plains groundwater system. 

Inclusion of the AEM data in the local Bridge Pā GW model was shown to provide a universal data worth 
of a similar magnitude to the most informative data across all predictions. Where existing data is available, 
the relative worth of AEM data fluctuates depending on whether or not other, more prediction-relevant, 
information is available in the history-matching dataset. 

These results, their implications, workflow considerations and future work are explored in the following 
sections. 
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4.1 Airborne Electromagnetic (AEM) and Regional Model Experiments 

4.1.1 Updated Model 

The regional model experiments explore two representations of the AEM data in the groundwater model. 
The first, skytem-k, uses AEM-derived information to inform groundwater model hydraulic conductivity 
and other boundary-condition properties (e.g. streambed hydraulic conductivity, drain conductance, 
offshore and hillslope boundary conductance), within the existing geo model structure. The second, 
skytem-lays, incorporates AEM-informed hydrogeological unit definitions to update the groundwater 
model layer structure (while maintaining the grid discretisation: 100 x 100 m cells and nine layers) and 
updates properties in this new structure. Both AEM-informed models result in significantly altered 
base-realisation properties relative to the geo model version. Generally, the AEM-informed properties are 
more spatially varied and span a greater value range. Higher hydraulic conductivity at depth and generally 
increased model thickness in the skytem-lays model version results in higher overall transmissivity 
beneath the central plains. Overall, greater detail in property, boundary condition and, for skytem-lays, 
model-layer definition was afforded by the inclusion of AEM data compared to the geo model. 

The base model parameter updates mean that there are higher instances of base parameters at the 
limits of what may have previously been expressed as the likely range of model parameter values. 
For example, the AEM-informed high hydraulic conductivity in a region that was previously defined as 
moderate or even low hydraulic conductivity may be close to, or even exceed, that expressed by the 
prior uncertainty in the geo model. As such, this may be evidence that the geo model uncertainty 
was understated. An ill-defined prior can prevent appropriate assimilation of history-matching data 
and propagate to predictive bias and poor representation of prediction uncertainty (in both a prior and 
posterior sense). Consideration of this should be given when evaluating the results herein. 

4.1.2 Pre-Conditioning 

As indicated above, the definition of prior parameter uncertainty is important for both history-matching 
and robust predictions. To promote consistency in the different regional model experiments in this study, 
prior uncertainty on parameters (expressed as multipliers) was the same for the geo and skytem models. 
However, in an effort to extract some further information from the AEM data and subsequent processing 
workflow, we explored a way of updating, or conditioning, the prior parameter uncertainty. The approach 
used was to honour the categorised clusters_dataset (Rawlinson 2023), which indicates locations with 
a high probability of high-conductivity gravels and locations with a high probability of low-conductivity 
clay-bound sediments. 

The pre-conditioning had minimal effect on the hydraulic conductivity ensemble means. This is due 
to base parameter values for the skytem models, around which the realisations of prior uncertainty 
were drawn, and the cluster definitions for prior conditioning being sourced from the same underlying 
data (interpreted AEM resistivity). However, the prior conditioning does result in a significant change 
in ensemble standard deviations. Generally, for both models, standard deviations were decreased 
through pre-conditioning; in some areas, this decrease is over an order of magnitude. However, there are 
areas, particularly in deeper layers beneath the Napier region, where standard deviations increased 
through prior conditioning. This is an area with few conditioning datapoints due to a lack of SkyTEM data 
coverage; therefore, the pre-conditioning may be causing a variance increase in an effort to satisfy the 
secondary (layer-mean) conditioning targets. This increase is somewhat unexpected and may be a 
reflection of the development of non-gaussian parameter distributions or unintended consequence of 
the inequality targets used in the pre-conditioning. 
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4.1.3 Matching Data 

The fits to history-matching observations vary with the different model versions. Generally, the relative 
history-matching performance of the different model versions was mixed. In some areas, water-level fits 
were improved in the AEM-informed skytem model versions, while, in others, the model updates with the 
AEM data resulted in poorer reproductions of observations. Generally, greater uncertainty in simulated 
outputs is maintained in the skytem model version posterior distributions than in the geo model posterior. 

As well as informing hydraulic conductivity, AEM data was also used to modify the definition of base 
model streambed hydraulic conductivity and drain conductance. This appears to have had an impact on 
fitting stream-related observations. Overall, AEM-informed skytem models better capture the surface-
water observations (in-stream flow and surface-water–groundwater exchange). However, the posterior 
simulated outputs that relate to observations are again more uncertain, in almost all instances. 
This posterior uncertainty is not significantly affected by pre-conditioning. 

The generally greater posterior simulated output uncertainty in the AEM-informed models is likely 
to be a function of the greater prior uncertainty range expressed in the AEM-informed skytem model. 
It also provides potential indication of tension in the observation dataset, as well as strong parameter 
non-uniqueness, whereby a range of parameter combinations can effectively fit observation data (or at 
least reduce the objective function value). 

Where fits are improved by the skytem model versions and their broader definition of prior uncertainty, 
it may be a further indication that the parameter uncertainty expressed in the geo model version was 
under-estimated. 

4.1.4 Airborne Electromagnetic (AEM) Informing Predictions 

In general, an aquifer system with greater heterogeneity can be expected to increase the uncertainty of 
some model predictions, for example, transport model predictions and local-field dependent predictions. 
Therefore, by enhancing our understanding of sub-surface detail, we can expect our quantification of 
the uncertainty of predictions to be more realistic, and, where we had previously under-estimated 
this heterogeneity, we can expect that prediction uncertainty may increase. The analyses depicted in the 
prediction figures based on these AEM-informed models (in Section 3.4 and the appendices) indicate 
that this has occurred for many of the predictions explored. 

The extent to which the greater structural detail and modified parameter uncertainty definition changes 
the uncertainty of model predictions was dependent on the predictions. Prior predictive distributions 
for the AEM-informed models suggest 2–3 times higher (and more uncertain) inflow from the hillslope 
boundary. This is potentially a consequence of regions where the AEM-informed boundary conductance 
is elevated, relative to the geo model, to values that not only promote higher inflow but are also in a more 
sensitive region in parameter space. 

Increases in AEM-informed boundary inflow are accommodated by increases in both discharge to 
surface water (surface-water–groundwater exchange) and offshore. In the prior, discharge to surface 
water takes up most of this extra component of inflow. In the posterior distributions (after history-
matching), the increase in hillslope boundary inflow is reduced (although less significantly for the skytem-
lays models) and the relative portioning to surface water and offshore discharge is evened-out, although 
significant predictive uncertainty remains. 

Interestingly, the broader posterior uncertainty in simulated outputs that relate to history-matching 
observations for the skytem model versions does not necessarily translate to significantly higher 
posterior prediction uncertainty for all predictions. While the budget term predictions are more uncertain 
for the AEM-informed models, uncertainty for many other predictions is similar or reduced (e.g. water-
level predictions). Many of the water-level predictions do show significant changes in posterior prediction 
distributions between the geo model and AEM-informed skytem versions. The most extreme changes 
in mean and median predictions are concentrated close to the boundary of the domain, often in areas 
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where prediction uncertainty (ensemble standard deviation) also increases. This is consistent with the 
changes seen in boundary inflow predictions when informing base model condition parameters with 
AEM data. However, there are also AEM-informed water-level prediction changes in the interior domain. 
Across much of the model domain, AEM-informed predictions of water levels are higher than the geo 
model predictions. However, in the Twyford region the AEM-informed water-level predictions are 
generally lower. These spatial variations in water-level prediction differences between the different 
models appear to be coincident with the simulated boundary between confined and unconfined aquifer 
conditions. Here, the AEM-informed models are potentially providing more detail on the location and 
sharpness of this important hydrogeological transition. 

Scenario-change predictions demonstrated minimal impact from incorporating the AEM data in the model 
workflow. Change-prediction distributions were largely centred on the same value for the different model 
versions and generally also demonstrated similar predictive uncertainty between models. The reduced 
insensitivity of change predictions has been observed in many other studies (e.g. Knowling et al. 2019) 
and highlights that exploring relative change predictions provides some insurance against both model 
defects and parameter uncertainty. However, we have only explored large-scale prediction scenarios 
that are influenced by a spatial average of the entire aquifer (homogenous change in stress applied). 
A heterogeneous stress application may reveal a different result; additionally, where parameter detail 
(e.g. high-resolution flow paths) is critical for a prediction, change predictions are less able to compensate 
for model defects. 

Predications that are expected to be more sensitive to parameter detail are preliminarily explored in 
Section 3.1.5, where results are presented for model predictions using the geo and skytem-lays models 
with and without tritium data (as per Hemmings et al. [in prep.]). In many, but not all cases, the uncertainty 
of predictions was reduced when history-matched to tritium data in addition to the original history-
matching dataset. Often, but not always, this reduction in uncertainty was greatest for the AEM-informed 
pre-conditioned case. This analysis also included predictions of groundwater age (median age [P50] 
and fifth percentile [P5]), as well as young fraction predictions. While predictions of the fraction of young 
water remain complex (as detailed in Hemmings et al. [in prep.]), the combined use of AEM data and 
tritium in the numerical model workflow clearly reduced P50 and P5 prediction uncertainty relative to 
models that only used one of these data sources (i.e. the geo model with tritium or skytem-lays without 
tritium). These results indicate that AEM-informed models enhance the processing of information that 
is influenced by parameter detail, such as tritium age-tracer data. 

4.1.5 Workflow Considerations 

The effort of this study focused on exploring the incorporation of AEM-derived hydrogeological 
information into the numerical groundwater model workflow. AEM data was used to define base model 
parameter values (which effectively became the mean values of the different prior parameter ensembles), 
modify model structure and attempt to refine the parameter uncertainty before history-matching. 

As briefly discussed above, the evaluation of the AEM data, on its own, may indicate that the parameter 
uncertainty applied in the geo model version was insufficient to appropriately represent the true 
uncertainty – for example, where AEM-informed hydraulic conductivity estimates approach or eclipse the 
limits anticipated in the geo model. Potentially, on the basis of the parameter variability insights gained 
from interpreting the AEM data, the geo model parameter uncertainty should be amended (increased). 

If the geo model uncertainty is under-estimated or misrepresented, the prediction uncertainty may not 
show an apparent improvement for AEM-informed models by way of uncertainty reduction. However, 
the under-representation of uncertainty can lead to erroneous predictions. Unfortunately, in a real-world 
setting, such erroneous predictions are difficult to identify, as the ‘truth’ is rarely known. 

Additionally, it could also be considered that the AEM-informed hydraulic-conductivity estimates are less 
uncertain (at least in some locations) than the estimates provided for the geo model, which were based 
on geological zonation and literature values. The prior conditioning effort attempted to reflect additional 
information around the (variable) uncertainty of AEM-informed parameter values. However, there would 
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be considerable value in continuing to explore the definition of uncertainty in AEM-derived property 
estimates. For this study, we wanted to isolate the AEM information from the geo model workflow and 
maintain consistency in our initial definition of property uncertainty. As such, we have maintained the 
same prior uncertainty definition for multiplier parameters across the experiments. 

The history-matching then undertaken in the experiments was general and limited. The emphasis was 
placed on maintaining consistency in the workflow between history-matching efforts using the different 
base models. In an effort to maintain a consistent and conservative representation of uncertainty in 
the posterior (after history-matching), a conservative noise model was applied to observation targets. 
As discussed in Hemmings et al. (in prep.), this is designed to accommodate the representativeness 
of long-term-averaged observations in a single steady-state model stress period. Additionally, the level 
of fit that was sought in the history-matching was also conservative. 

As well as providing a consistent basis for the different history-matching efforts, this relatively limited 
history-matching may also have helped guard against bias or corruption of predictions through 
inappropriate fitting of historical data in an imperfect model (Hemmings et al. 2020; White et al. 2020b). 
Through more bespoke definition of observation weights, a more detailed analysis of individual target 
observations values and more exhaustive history-matching, it may be possible to improve the level of fit 
for any of the history-matching efforts and therefore potentially improve the model predictive capacity. 
This should be an important consideration before direct use of the results presented herein in decision-
making processes. 

Also discussed in Hemmings et al. (in prep.), the IES process in these experiments was not as efficient 
at reducing the objective function as is often observed (e.g. White et al. 2018). Hemmings et al. (in prep.) 
cites that challenges in reducing the objective function potentially result from non-linearities introduced 
through use of the inequality constraints on water levels as a measure to combat numerical instability. 
Further investigation into the parameter combinations that results in this instability might allow for 
mitigation within the forward model and alleviate the need for the inequality constraint. This could allow 
for more efficient history-matching. Improvements to numerical stability resulting in reduced forward 
model failure rate would also support a reduced number of prior realisations, again, providing a further 
efficiency gain. 

The success of the prior conditioning efforts was mixed. While the results showed that the IES algorithm 
can effectively condition parameters to fit expectations about the distribution of specific materials, the 
formulation of the objective function with only inequality constraints, which cause a natural non-linearity, 
likely impacted the reliability of the conditioning. Some pre-conditioned parameter distributions became 
quite non-gaussian, and potentially large-scale parameters were able to be heavily conditioned, without 
penalty, to represent what could be relatively fine-scale features. The method shows promise, but more 
work is needed to ensure appropriate objective function formulation. 

Work is underway to explore including expression and parametrisation of the non-stationary geostructures 
in the workflow. Potentially, this is another avenue where valuable information can be derived from AEM 
data that relates to the relative spatial variation in material properties. 

One of the major differences between the geo model and the AEM-informed skytem models was the 
simulated increase in boundary inflow. The increase is expected to be related to AEM-informed boundary 
condition properties (e.g. increased conductance from predicted locations of limestone), allowing greater 
inflow. The AEM-informed boundary conditions also appear to move base parameter values to a more 
sensitive part of parameter space. Consequently, the uncertainty around the predicted hillslope inflow 
contribution to the groundwater budgets is also increased. This uncertainty is not well constrained by the 
current history-matching dataset. The collection or inclusion of data to help reduce this uncertainty could 
potentially provide significant improvements to the models predictive capacity. 



Confidential 2025  

 

70 GNS Science Consultancy Report 2025/06 
 

4.2 Data Worth in Locally Focused Model 

The data-worth analysis explored the worth of data using a one-at-a-time approach, thereby isolating 
the prediction-relevant information in AEM data where we assume either that: (i) there is no existing data 
and AEM data is added in or (ii) there is ‘all’ existing data and each dataset is removed one at a time. 

The data-worth analysis confirms what we already know – that, if there is no data, then the best to gather 
is that of the same type as the prediction. However, in the context of exploring a range of predictions, 
the analysis indicated that AEM-derived hydraulic-conductivity data would improve the reliability of all 
four predictions explored (Section 1.3.2) to a level commensurate with the most informative data in 
each prediction context – no other single dataset was able to achieve this. This indicates the general 
utility of AEM data in providing information that enhances the reliability of many prediction types to a 
significant degree in any context where very little data exists. Contrast this with other data that is 
generally most relevant to a specific prediction. 

Isolating the relative worth of AEM data as part of existing hydrogeological-monitoring data 
(e.g. groundwater levels, stream flows, etc.) varies depending on the prediction-data context. We note 
that the regional modelling work indicates that often the maximal value of AEM data may be achieved 
in groundwater systems with existing hydrological and hydrogeological datasets. 

While not easy to quantify with data-worth methods, AEM data also brought changes in the system 
conceptualisation and the resulting design of the local Bridge Pā model. The AEM data shows a large 
vertical drop-off in the model basement along the Awanui Fault delineation. This new basement elevation, 
coupled with an initial AEM-informed parameter distribution, provided a much improved starting point 
for history-matching. 

4.3 General Future Work 

The updated boundary-condition properties raise questions of significant unknowns in the budgetary 
contribution of hillslope boundary inflow. As shown in this study, uncertainty around boundary inflows 
propagates to uncertainty in surface-water–groundwater exchange and offshore flow, neither of which 
is well constrained by the current system observations. Estimation of the expected boundary flow 
contribution to the groundwater budget (at any spatial scale) would be beneficial for model history-
matching and predictions. This may be possible from the analysis of existing data, such as chemical 
end-member analysis or stable-isotope analysis. While assimilation of chemical data from point 
samples in time and space presents challenges of non-uniqueness, similar to those presented for 
tritium in Hemmings et al. (in prep.) and Knowling et al. (2019), pre-processing this sort of data to give 
broad-scale budgetary estimates might provide sufficient and effective information to help constrain 
influential parameters. 

Although the results presented herein indicate that there is significant value in the AEM data for 
improving groundwater models, the level of detail for property definition that is provided by the AEM 
data may not be maximally leveraged by the nature of the groundwater model predictions explored 
here. The budgetary component predictions are naturally complex aggregations of whole-system 
behaviour. Stream flow and exchange predictions are also integrations of sub-regional conditions, 
i.e. along a collection of stream reaches and upstream and downstream hydrogeological conditions. 
Even though water-level observations are point-specific, these are only minimally sensitive to small- 
scale property features; water levels tend to be locally smooth and therefore are sensitive to the 
hydrogeological properties variations across a broad area. Even greater value in the AEM data might be 
elicited for predictions that are more sensitive to the local-scale features that the data resolves, such 
as groundwater age. 

This report presented a preliminary exploration of combining AEM data with tritium data, which should 
be expanded on. Improved utilisation of the finer-scale property definition provided by the AEM data 
and associated better extraction of information contained within the tritium data may also be facilitated 
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by supporting less stationarity in the geostructures that define the spatial relationships between 
parameters (e.g. defining spatially varying anisotropy). Including adjustable and conditionable spatially 
varying geostructure definition parameters as uncertainty super-parameters may support the definition 
and evolution (through history-matching) of fine-scale flow features that data and predictions might 
be sensitive to. 

The use of non-stationary geostructures in model parameterisation may also present an additional 
opportunity to incorporate information from AEM. The broad coverage of the AEM data potentially 
contains unique information on the variability in the relationships between parameters (or co-variance). 
This could be used to condition geostructure super-parameters (i.e. spatially varying range and 
anisotropy) in a joint inversion or a similar pre-conditioning exercise to the one presented here. 
However, whether using joint inversion or pre-conditioning, the results presented here indicate that 
additional consideration is required when formulating the objective function using the AEM-derived data. 
Additionally, as noted previously, the same prior uncertainty definition was maintained for multiplier 
parameters across the experiments in this study. However, more formal uncertainty bounds could be 
derived from the SkyTEM data. 
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5.0 Summary of Conclusions 
Some of the changes introduced through incorporating AEM data in numerical groundwater models are 
explicitly quantifiable, while others are more qualitative. Some of the changes are subtle, while others 
appear more pronounced. 

AEM data was used to update numerical groundwater flow models in the Heretaunga Plains as follows: 

• Re-definition of model hydrogeological properties with values, detail and coverage that was 
previously unavailable (initial values and their uncertainty estimates for hydraulic conductivity in both 
horizontal and vertical directions, streambed hydraulic conductivity, drain conductance, porosity). 
Additional parameters defined on the basis of hydraulic conductivity were also modified. These 
include, general head boundary (GHB) conductance and elevation around the inland boundary of 
the model, as well as the coastal GHB conductance. 

• Modification of the groundwater model grid-layering structure to better represent the thickness 
of potentially hydrogeologically active units. 

• Refinement of parameter uncertainty (pre-conditioning) according to the probabilistic presence of 
end-member hydrogeological materials (gravel and clay). 

Note that, for this study, the intention was to isolate the AEM information and maintain consistency in the 
initial definition of property uncertainty. As such, the same prior uncertainty definition was maintained 
for multiplier parameters across the experiments. 

Assessments undertaken included: 

• Comparison of four different Heretaunga GW model versions: (i) parameters updated; (ii) parameters 
updated and pre-conditioning undertaken; (iii) parameters and layers updated; (iv) parameters and 
layers updated and pre-conditioning undertaken. 

• Comparison with the inclusion of history-matching to tritium data. 

• Data-worth analyses to isolate the impact of prediction-relevant information in AEM data where we 
assume either that: (i) there is no existing data and AEM data is added in or (ii) there is ‘all’ existing 
data and each dataset is removed one at a time. 

These assessments indicate that: 

• Overall, greater detail in property, boundary condition and, for skytem-lays, model-layer definition 
was afforded by the inclusion of AEM data compared to the geo model. 

• The variation in AEM-derived property values indicates that previous parameter uncertainty was 
likely under-represented. This could have implications for history-matching and the reliability of 
predictions. Therefore, the inclusion of AEM data is expected to have increased prediction reliability 
even where apparent prediction uncertainty has not been reduced. 

• The added benefit of AEM-derived models is most significant for predictions that are sensitive 
to smaller-scale flow paths. It is also most significant wherever the prior parameter uncertainty 
distribution was previously under-estimated. 

• AEM-informed models appear to enhance the ability to extract valuable information from data 
sources that are influenced by fine-scale system complexity, such as tritium. 

• Property updates imply greater potential for groundwater contributions from hillslope boundaries. 

• Data-worth analyses indicate that the AEM data provides information that enhances the reliability 
of many prediction types to a significant degree in any context where very little data exists. This is 
in contrast with most other commonly available data that is generally most relevant to a specific 
prediction. 
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Recommendations for further work include: 

• Further studies should explore data collection and analysis that may help reduce the uncertainty 
in boundary contributions to the regional and local groundwater budget, for example, boundary flux 
estimates utilising chemistry data in end-member mixing boundary conditions and associated 
rejection sampling in the numerical GW model. 

• There are further opportunities presented by the broad-coverage yet detailed 3D AEM-derived 
system information that may allow for an even greater extraction of value in terms of model 
predictive capacity, for example, defining spatially varying anisotropy. These warrant further 
investigation. 

• The data-worth analyses could be extended to formally assess optimal combinations of different 
data types, rather than the simple one-at-a-time analyses described herein. 

• As noted above, in this study, the same prior uncertainty definition was maintained for multiplier 
parameters across the experiments. However, more formal uncertainty bounds could be derived 
from the SkyTEM data. 
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6.0 Digital Deliverables 
The zip file tw_heretaunga-main.zip contains scripts and functions for: 

• Building TWOTW and SkyTEM-informed versions of Heretaunga Plains groundwater simulations: 

˗ Steady-state flow model + 

˗ Tritium transport + 

˗ Combined young fraction and mean age transport. 

• Constructing PEST interfaces for running history-matching (with and without tritium data) and 
uncertainty analysis. 

• Undertaking uncertainty analysis on predictive scenarios. 

• Processing simulation and uncertainty analysis results and comparing between different model and 
history-matching versions. 

Within the zip file, README contains a brief look at running the main workflow, while more detailed 
guidance is provided in docs/_build/latex/twotwheretaungaregionalmodelling.pdf. 



 Confidential 2025 

 

GNS Science Consultancy Report 2025/06 75 
 

7.0 Acknowledgements 
This work has been jointly funded by the New Zealand Government’s Provincial Growth Fund, 
Hawke’s Bay Regional Council, and GNS Science’s (GNS) Strategic Science Investment Fund (Ministry of 
Business, Innovation & Employment; Programme Investment Contract C05X1702). The groundwater 
modelling component of this work was co-funded by the GNS-led programme Te Whakaheke o te Wai, 
funded by the New Zealand Ministry of Business, Innovation & Employment (MBIE; grant no. C05X1803). 

Thank you to Simon Harper of Hawke’s Bay Regional Council and Jeff Smith (previously at Hawke’s Bay 
Regional Council) for their contributions to this project. Thank you to Amanda Langley of Project Haus for 
project management support. 

Thank you to Simon Harper, Ahmed Elwan, Tom Wilson, Lee Chambers and Stewart Cameron for providing 
report reviews. 

8.0 References 
Baker M-A, Edmonds C. 2020. Proposed Plan Change 9: Tūtaekurī, Ahuriri, Ngaruroro and Karamū Catchments. 

Napier (NZ): Hawke’s Bay Regional Council. Publication Number 5456. 

Bakker M, Post V, Langevin CD, Hughes JD, White JT, Starn JJ, Fienen MN. 2016. Scripting MODFLOW model 
development using Python and FloPy. Groundwater. 54(5):733–739. https://doi.org/10.1111/gwat.12413 

Begg JG, Jones KE, Lee JM, Tschritter C. 2022. 3D geological map of the Napier-Hastings urban area 
[explanatory text]. Lower Hutt (NZ): GNS Science. 21 p. (GNS Science geological map; 7b). 
https://doi.org/10.21420/QFEK-9369 

Dausman AM, Doherty J, Langevin CD, Sukop MC. 2010. Quantifying data worth toward reducing predictive 
uncertainty. Groundwater. 48(5):729–740. https://doi.org/10.1111/j.1745-6584.2010.00679.x 

Foged N. 2022. Hawke’s Bay 3D Aquifer Mapping Project: Heretaunga Plains, 3D hydrostratigraphic modelling. 
Aarhus (DK): Aarhus University HydroGeophysics Group. 27 p. Prepared for Hawke’s Bay Regional Council. 

Hemmings B, Knowling MJ, Moore CR. 2020. Early uncertainty quantification for an improved decision support 
modeling workflow: a streamflow reliability and water quality example. Frontiers in Earth Science. 
8. https://doi.org/10.3389/feart.2020.565613 

Hemmings BJC, Moore CR, Rawlinson ZJ. In prep. Te Whakaheke o te Wai Programme – Heretaunga Plains regional 
groundwater model update: age and flow predictions and uncertainty. Lower Hutt (NZ): GNS Science. 
(GNS Science report; 2024/44). 

Hughes JD, Langevin CD, Paulinski SR, Larsen JD, Brakenhoff D. 2024. FloPy workflows for creating structured 
and unstructured MODFLOW models. Groundwater. 62(1):124–139. https://doi.org/10.1111/gwat.13327 

Knowling MJ, White JT, Moore CR. 2019. Role of model parameterization in risk-based decision support: 
an empirical exploration. Advances in Water Resources. 128:59–73. 
https://doi.org/10.1016/j.advwatres.2019.04.010 

Knowling MJ, White JT, Moore CR, Rakowski P, Hayley K. 2020. On the assimilation of environmental tracer 
observations for model-based decision support. Hydrology and Earth System Sciences. 
24(4):1677–1689. https://doi.org/10.5194/hess-24-1677-2020 

McKenna SA, Akhriev A, Echeverría Ciaurri D, Zhuk S. 2020. Efficient uncertainty quantification of reservoir 
properties for parameter estimation and production forecasting. Mathematical Geosciences. 
52:233–251. https://doi.org/10.1007/s11004-019-09810-y 

Moore CR. 2025. Personal communication. Senior Groundwater Modeller, GNS Science; Lower Hutt, NZ. 

Moore C, Doherty J. 2005. Role of the calibration process in reducing model predictive error. 
Water Resources Research. 41(5):W05020. https://doi.org/10.1029/2004WR003501 

https://doi.org/10.1111/gwat.12413
https://doi.org/10.21420/QFEK-9369
https://doi.org/10.1111/j.1745-6584.2010.00679.x
https://doi.org/10.3389/feart.2020.565613
https://doi.org/10.1111/gwat.13327
https://doi.org/10.1016/j.advwatres.2019.04.010
https://doi.org/10.5194/hess-24-1677-2020
https://doi.org/10.1007/s11004-019-09810-y
https://doi.org/10.1029/2004WR003501


Confidential 2025  

 

76 GNS Science Consultancy Report 2025/06 
 

Morgenstern U. 2021. Personal communication. Principal Scientist Environmental Chemistry, GNS Science; 
Lower Hutt, NZ. 

Morgenstern U, Begg JG, van der Raaij RW, Moreau M, Martindale H, Daughney CJ, Franzblau RE, Stewart MK, 
Knowling MJ, Toews MW, et al. 2018. Heretaunga Plains aquifers: groundwater dynamics, source and 
hydrochemical processes as inferred from age, chemistry, and stable isotope tracer data. Lower Hutt (NZ): 
GNS Science. 82 p. (GNS Science report; 2017/33). https://doi.org/10.21420/G2Q92G 

Rakowski P, Knowling MJ. 2018. Heretaunga aquifer groundwater model: development report. 
Napier (NZ): Hawke's Bay Regional Council. 182 p. HRBC Report RM18-14. 

Rawlinson ZJ. 2023. Hawke’s Bay 3D Aquifer Mapping Project: 3D hydrogeological models 
from SkyTEM data in the Heretaunga plains. Lower Hutt (NZ): GNS Science. 77 p. Consultancy Report 
2023/57. Prepared for Hawke's Bay Regional Council. 

Rawlinson ZJ, Foged N, Westerhoff RS, Kellett RL. 2021. Hawke’s Bay 3D Aquifer Mapping Project: 
Heretaunga Plains SkyTEM data processing and resistivity models. Wairakei (NZ): GNS Science. 
90 p. Consultancy Report 2021/93. Prepared for Hawke's Bay Regional Council. 

Rawlinson ZJ, Hemmings BJC, Moore CR. 2024. Hawke’s Bay 3D aquifer mapping project: Heretaunga Plains 
numerical groundwater model updates using SkyTEM data. Wairakei (NZ): GNS Science. 14 p. 
Consultancy Report 2024/10LR. Prepared for Hawke's Bay Regional Council. 

Sahoo TR, Rawlinson ZJ, Kellett RL. 2023. Hawke’s Bay 3D Aquifer Mapping Project: delineation of major 
hydrological units within the Heretaunga Plains from SkyTEM-derived resistivity models. Lower Hutt (NZ): 
GNS Science. 55 p. Consultancy Report 2022/30. Prepared for Hawke’s Bay Regional Council. 

Toews MW, Hemmings B. 2019. A surface water network method for generalising streams and rapid groundwater 
model development [abstract]. In: New Zealand Hydrological Society Conference: oral abstracts; 
2019 Dec 3–6; Rotorua, NZ. Wellington (NZ): New Zealand Hydrological Conference. p. 166–167. 

White JT, Fienen MN, Doherty JE. 2016. A python framework for environmental model uncertainty analysis. 
Environmental Modelling & Software. 85:217–228. https://doi.org/10.1016/j.envsoft.2016.08.017 

White JT, Fienen MN, Barlow PM, Welter DE. 2018. A tool for efficient, model-independent management 
optimization under uncertainty. Environmental Modelling & Software. 100:213–221. 
https://doi.org/10.1016/j.envsoft.2017.11.019 

White JT, Foster LK, Fienen MN, Knowling MJ, Hemmings B, Winterle JR. 2020a. Toward reproducible 
environmental modeling for decision support: a worked example. Frontiers in Earth Science. 
8:50. https://doi.org/10.3389/feart.2020.00050 

White JT, Knowling MJ, Moore CR. 2020b. Consequences of groundwater-model vertical discretization in 
risk-based decision-making. Groundwater. 58(5):695–709. https://doi.org/10.1111/gwat.12957 

White JT, Hemmings B, Fienen MN, Knowling MJ. 2021. Towards improved environmental modeling outcomes: 
enabling low-cost access to high-dimensional, geostatistical-based decision-support analyses. 
Environmental Modelling & Software. 139:105022. https://doi.org/10.1016/j.envsoft.2021.105022 

Wilding T. 2018. Heretaunga Springs: gains and losses of stream flow to groundwater on the Heretaunga Plains. 
Napier (NZ): Hawke's Bay Regional Council. HBRC Report RM18-13 – 4996. 

Yang J, McMillan H, Zammit C. 2017. Modeling surface water–groundwater interaction in New Zealand: 
model development and application. Hydrological Processes. 31(4):925–934. 
https://doi.org/10.1002/hyp.11075 

 

https://doi.org/10.21420/G2Q92G
https://doi.org/10.1016/j.envsoft.2016.08.017
https://doi.org/10.1016/j.envsoft.2017.11.019
https://doi.org/10.3389/feart.2020.00050
https://doi.org/10.1111/gwat.12957
https://doi.org/10.1016/j.envsoft.2021.105022
https://doi.org/10.1002/hyp.11075


 Confidential 2025 

 

GNS Science Consultancy Report 2025/06 77 
 

 

 

 

 

 

 

 

 

 

APPENDICES 

 



Confidential 2025  

 

78 GNS Science Consultancy Report 2025/06 
 

 

 

 

 

 

 

 

 

 

This page left intentionally blank. 

 



 Confidential 2025 

 

GNS Science Consultancy Report 2025/06 79 
 

APPENDIX 1   Comparison of skyTEM-k and geo Models 

 
Figure A1.1 Layer bottom elevations (metres above sea level) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 

 
Figure A1.2 Layer bottom depths (metres) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 
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Figure A1.3 Layer bottom thickness (metres) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 

 
Figure A1.4 Base-realisation horizontal hydraulic conductivity (m/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 
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Figure A1.5 Base-realisation vertical hydraulic conductivity (m/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 

 
Figure A1.6 Base-realisation coastal general head boundary (GHB) conductance (m2/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 
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Figure A1.7 Base-realisation hillslope boundary general head boundary (GHB) conductance (m2/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed (skytem-k) models. 

 
Figure A1.8 Base-realisation stream hydraulic conductivity (m/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-

informed (skytem-k) models. 

 
Figure A1.9 Base-realisation drain conductances (m2/day) for the (left) original (TWOTW/geo) and (right) SkyTEM-informed 

(skytem-k) models. 
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APPENDIX 2   History-Matching Observations 
 

Table A2.1 Water-level (head) observations used in history-matching. Note: ‘adjusted standard deviation’ refers 
to the implied observation error accounting for the number of samples in the long-term average data 
value (the temporal coverage of the record). ‘bs’ = below surface; ‘amsl’ = above mean sea level. 

Site 
Bore 

ID 

Easting 
NZTM 

(m) 

Northing 
NZTM 

(m) 

Bore 
Depth 
(m bs) 

Data Start 
Date 

Data End 
Date 

Sample 
Count 

Data Mean, 
Target 
Value 

(m amsl) 

Data 
Standard 
Deviation 

(m) 

Adjusted 
Standard 
Deviation 

(m) 

113 1928183 5599057 23.8 1991-02-19 2000-06-28 69 12.31 1.20 2.36 

164 1923630 5606859 9.8 1975-09-18 1986-08-26 9353 17.99 0.31 0.31 

222 1936826 5615559 59.1 1995-01-12 2021-07-07 25,5180 7.84 0.64 0.64 

244 1926431 5606310 29.6 1991-04-12 2000-06-28 108 13.65 0.44 0.87 

271 1933015 5615890 50.5 1991-02-14 2000-06-28 124 9.53 0.72 1.42 

413 1936992 5620242 82.6 2001-07-03 2014-09-09 8 13.06 3.83 7.64 

605 1921569 5602066 18.3 1991-03-22 2005-07-20 148 13.54 0.50 0.97 

611 1931423 5615292 39.3 1995-05-17 2018-06-14 14 10.05 2.81 5.61 

705 1930387 5607408 40.5 1983-01-19 2018-02-01 72,213 11.24 1.05 1.05 

913 1931939 5613728 41.5 1991-02-14 2000-02-09 140,474 10.23 0.60 0.60 

938 1938187 5608002 26.8 1991-02-19 2000-06-28 110 7.45 0.64 1.26 

990 1926553 5602674 36.6 1991-02-19 2021-07-07 369 13.29 0.75 1.40 

995 1929290 5602707 35.5 1991-02-19 2002-04-02 128 12.81 0.76 1.49 

1001 1926661 5612540 21.6 1991-02-25 2015-04-29 120,983 11.95 1.00 1.00 

1003 1921892 5604378 9.8 2009-04-23 2021-07-07 416,722 15.56 1.41 1.41 

1053 1932150 5610421 37.5 1991-02-19 1998-09-24 101 11.13 0.67 1.31 

1129 1935128 5602829 21.2 1991-02-19 2003-03-05 138 7.91 0.57 1.11 

1191 1919581 5606894 21.9 1998-06-17 2020-03-19 28 19.43 0.92 1.83 

1210 1935226 5603433 18.0 2016-09-30 2017-01-26 16,843 6.87 0.20 0.45 

1320 1932922 5602633 16.8 2009-12-17 2010-05-20 7 6.85 0.37 1.66 

1329 1935187 5603357 22.0 2016-09-29 2016-12-21 39,992 8.44 0.66 1.48 

1412 1934548 5616458 56.7 1991-02-14 2006-12-06 196 8.73 0.92 1.77 

1417 1934507 5614019 53.6 1991-02-22 2021-07-07 368 9.12 0.69 1.29 

1450 1934175 5612199 49.8 1991-02-19 2021-07-07 363 10.35 0.66 1.23 

1459 1932238 5603941 53.0 1995-02-28 2016-06-08 11 9.72 0.67 1.33 

1501 1924441 5599661 26.0 1991-02-19 2021-07-07 369 13.18 0.87 1.63 

1674 1928675 5608417 38.0 1991-04-12 2021-07-07 383 12.46 0.61 1.13 

1695 1924330 5611791 22.5 1994-08-24 2015-11-06 238 17.23 0.29 0.55 

1703 1923396 5612645 16.3 1995-02-18 2008-11-11 160 18.84 0.20 0.40 

1799 1935938 5608506 32.6 1995-04-28 2014-09-11 19 8.09 1.26 2.50 

1890 1935139 5603281 21.0 2016-09-30 2016-11-16 16,859 7.35 0.23 0.53 

1940 1936870 5601729 66.4 1997-09-03 2020-03-18 64 9.27 0.69 1.37 
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Site 
Bore 

ID 

Easting 
NZTM 

(m) 

Northing 
NZTM 

(m) 

Bore 
Depth 
(m bs) 

Data Start 
Date 

Data End 
Date 

Sample 
Count 

Data Mean, 
Target 
Value 

(m amsl) 

Data 
Standard 
Deviation 

(m) 

Adjusted 
Standard 
Deviation 

(m) 

2106 1935087 5603273 24.0 2016-09-29 2016-12-22 39,986 9.07 0.46 1.03 

2801 1920543 5610381 11.8 1990-11-23 2021-07-07 409,431 27.18 0.61 0.61 

3148 1919547 5606374 32.0 1995-07-27 2000-06-28 53 19.48 0.64 1.91 

3336 1928377 5603869 47.5 1995-04-24 2021-07-07 70,476 12.94 0.73 0.73 

3337 1918450 5604755 36.0 2009-12-17 2010-05-20 7 26.43 1.59 7.14 

3453 1908915 5606242 27.3 2003-09-02 2021-01-20 194,168 81.03 0.43 0.43 

3525 1927030 5598449 31.5 1997-10-27 2018-06-05 246,909 12.31 1.03 1.03 

3697 1928377 5603869 89.5 1995-03-14 2021-07-07 127,990 12.90 0.68 0.68 

3698 1924122 5605227 14.2 1996-12-09 2021-07-07 194,860 13.63 0.72 0.72 

3737 1924483 5606575 29.2 1974-05-07 2021-07-07 866,197 14.58 0.51 0.51 

3738 1924484 5606576 5.8 1974-06-06 2003-10-15 13,478 15.16 0.21 0.21 

3739 1917655 5604982 21.3 1975-06-09 1979-06-11 8148 35.30 1.52 2.38 

3742 1921457 5610003 8.2 1982-03-19 1982-12-01 918 23.02 0.22 0.84 

3749 1938567 5608691 32.0 1981-12-18 2020-12-04 37,290 5.99 0.57 0.57 

3779 1935832 5620724 64.0 1995-11-30 2000-06-29 67,187 7.13 1.02 1.53 

3781 1932018 5618064 38.1 1999-04-07 2020-03-19 25 8.38 0.93 1.85 

4151 1934987 5603184 26.5 2016-10-07 2016-11-29 25,437 7.16 0.19 0.42 

4333 1903848 5613617 61.0 2000-10-24 2008-12-22 62 157.98 2.13 4.21 

4362 1904774 5613227 15.5 2013-05-09 2020-08-07 16 148.44 1.70 3.38 

4375 1903164 5613861 24.0 2001-07-16 2009-01-26 59 151.09 4.21 8.33 

4384 1902441 5613741 57.5 2001-05-22 2009-09-29 51 152.66 3.38 6.69 

4393 1902586 5613730 57.5 2001-05-22 2009-09-29 60 152.28 4.95 9.78 

4559 1898703 5613606 54.4 2002-10-16 2010-04-30 47 165.22 3.80 7.53 

4614 1898264 5613295 49.0 2002-05-01 2017-11-22 68 180.31 3.94 7.77 

4618 1918086 5604724 44.4 2009-12-17 2010-05-20 7 27.44 1.57 7.06 

4650 1902796 5614412 60.0 2003-04-24 2008-09-26 45 165.22 0.48 0.95 

4707 1903719 5614084 24.2 2004-03-17 2006-08-24 22 153.57 2.66 7.96 

4959 1910632 5610931 56.1 2003-09-26 2008-09-26 35 105.73 0.21 0.42 

5023 1904771 5613219 54.0 2003-10-23 2020-08-07 38,024 154.14 1.17 1.17 

5390 1904470 5613860 53.7 2006-05-16 2015-09-25 71 141.03 3.72 7.35 

5453 1904146 5613900 54.0 2006-09-27 2015-09-25 68 147.69 4.24 8.38 

5988 1924134 5602752 109.0 2010-01-21 2021-07-07 233,454 12.34 0.89 0.89 

6502 1922828 5608760 27.1 1972-12-20 1976-03-10 118 19.50 0.39 1.14 

6505 1922828 5609060 19.8 1973-02-07 1976-03-10 118 19.15 0.36 1.06 

6506 1923129 5609061 27.0 1972-11-22 1976-03-10 118 19.26 0.42 1.24 

7980 1924608 5610388 20.1 1991-02-13 2020-11-03 368 16.35 0.45 0.84 

8512 1923124 5604296 29.8 1973-03-15 1976-03-11 114 14.41 0.42 1.23 
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Site 
Bore 

ID 

Easting 
NZTM 

(m) 

Northing 
NZTM 

(m) 

Bore 
Depth 
(m bs) 

Data Start 
Date 

Data End 
Date 

Sample 
Count 

Data Mean, 
Target 
Value 

(m amsl) 

Data 
Standard 
Deviation 

(m) 

Adjusted 
Standard 
Deviation 

(m) 

8515 1923120 5607127 27.1 1973-02-14 1976-03-11 114 17.78 0.41 1.21 

8517 1922243 5606600 18.3 1973-03-15 1976-03-11 109 18.33 0.43 1.26 

8521 1923103 5605947 30.5 1997-12-08 2020-03-18 84 16.01 0.76 1.50 

8523 1922428 5607459 18.3 1973-03-15 1976-03-11 76 18.15 0.31 0.91 

8524 1923029 5607859 30.0 1973-02-07 1975-10-09 106 18.27 0.41 1.22 

8525 1923229 5607459 30.5 1973-02-14 1975-10-09 106 17.91 0.46 1.35 

8527 1922213 5606017 17.7 1973-03-15 1976-03-11 104 18.50 0.49 1.44 

9068 1931400 5615240 45.1 1997-07-25 2021-07-07 277,755 12.05 0.53 0.53 

10212 1932190 5617087 38.1 1990-01-01 2003-03-05 332,867 8.70 0.87 0.87 

10313 1921929 5603355 25.0 1973-03-27 1976-03-11 80 14.51 0.56 1.65 

10340 1922962 5609398 16.5 1997-05-23 2000-06-28 42,515 19.10 0.52 0.78 

10344 1923829 5608260 22.9 1973-03-27 1976-03-10 108 17.72 0.37 1.09 

10345 1922928 5609861 30.1 1973-02-28 1973-05-17 12 20.60 0.25 1.14 

10348 1922928 5609561 4.8 1973-05-12 1976-03-10 107 21.00 0.10 0.31 

10349 1922928 5609661 17.7 1973-05-24 1976-03-10 100 19.64 0.33 0.98 

10356 1921054 5607416 30.0 1973-02-21 2020-01-17 430 19.37 0.85 1.57 

10357 1923729 5609561 26.4 1973-03-15 1976-03-10 109 18.62 0.33 0.97 

10358 1923629 5609461 15.6 1973-09-13 1976-03-10 85 18.65 0.33 0.97 

10359 1923729 5609461 14.3 1973-09-13 1976-03-10 87 18.36 0.32 0.96 

10362 1923329 5608260 30.7 1973-01-17 1976-03-10 115 18.23 0.40 1.17 

10363 1922829 5608360 22.7 1973-01-24 1975-10-09 112 18.96 0.38 1.10 

10365 1923129 5609161 12.8 1973-08-29 1976-03-10 89 19.62 0.37 1.09 

10370 1922928 5609861 13.1 1974-02-08 1976-03-10 63 21.42 0.35 1.03 

10371 1922467 5609565 13.4 1972-01-01 2021-07-07 823,092 20.13 0.67 0.67 

10496 1935134 5602998 8.3 2003-05-28 2018-02-01 186 7.89 0.31 0.59 

10773 1933796 5605715 12.8 1991-03-22 2006-02-10 240,455 8.92 0.58 0.58 

15001 1935267 5612895 161.5 1995-08-29 2021-07-07 200,910 11.44 0.48 0.48 

15002 1935267 5612895 103.5 1995-08-29 2021-07-07 217,353 9.74 0.56 0.56 

15003 1935267 5612895 65.5 1995-09-15 2021-07-07 226,827 9.65 0.56 0.56 

15004 1919828 5604728 25.0 1991-02-13 2021-07-07 713,979 22.74 1.93 1.93 

15005 1920276 5609193 17.6 1992-06-02 2021-07-07 430,114 25.19 1.32 1.32 

15006 1926345 5609156 30.2 1991-02-19 2018-06-05 152,014 13.55 0.51 0.51 

15007 1908915 5606242 16.5 2013-05-09 2021-01-20 150,074 82.66 1.03 1.03 

15008 1908915 5606242 19.8 2013-05-09 2021-01-20 179,625 81.56 0.55 0.55 

15009 1924122 5605227 74.8 1996-12-09 2021-07-07 91 13.69 0.66 1.30 

15010 1924122 5605227 48.0 1996-12-09 2021-07-07 201,312 13.21 0.73 0.73 

15011 1924122 5605227 114.0 1996-09-20 2021-07-07 270,325 13.37 0.58 0.58 
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Site 
Bore 

ID 

Easting 
NZTM 

(m) 

Northing 
NZTM 

(m) 

Bore 
Depth 
(m bs) 

Data Start 
Date 

Data End 
Date 

Sample 
Count 

Data Mean, 
Target 
Value 

(m amsl) 

Data 
Standard 
Deviation 

(m) 

Adjusted 
Standard 
Deviation 

(m) 

15012 1928377 5603869 114.0 1997-04-08 2021-07-07 59 12.22 0.89 1.76 

15018 1928377 5603869 152.5 2021-02-24 2021-07-07 6 11.83 0.49 2.18 

15022 1935267 5612895 40.5 1995-09-15 2021-07-07 226,358 9.63 0.57 0.57 

15464 1924134 5602752 81.5 2010-01-21 2021-07-07 175,890 12.40 0.89 0.89 

15465 1924134 5602752 15.0 2010-01-21 2021-07-07 236,396 11.52 0.50 0.50 

15684 1927202 5618662 13.2 2010-06-10 2021-07-07 177,311 20.64 0.24 0.24 

15794 1924708 5619382 90.0 2011-04-07 2021-07-07 106,977 25.22 0.31 0.31 

15795 1923396 5613907 96.0 2011-06-10 2019-11-29 166,737 17.47 0.17 0.17 

15796 1923396 5613907 37.7 2011-06-10 2021-07-07 176,388 17.63 0.22 0.22 

15884 1924706 5619380 10.4 2011-08-08 2021-07-07 171,267 25.42 0.22 0.22 

16078 1916483 5605275 40.0 2014-01-08 2021-07-07 202,085 45.86 0.72 0.72 

16202 1933728 5606795 11.2 2014-10-15 2021-07-07 218,160 2.19 0.27 0.27 

16203 1933732 5606796 22.2 2014-10-15 2021-07-07 227,979 8.34 0.68 0.68 

16300 1924834 5610619 98.0 2015-04-23 2021-07-07 88 14.42 0.31 0.61 

16360 1924829 5610617 65.3 2015-04-23 2021-07-07 134,478 15.21 0.31 0.31 

16361 1924829 5610618 23.9 2015-04-23 2021-07-07 186,928 15.68 0.33 0.33 

16383 1934943 5603162 150.0 2016-03-24 2021-07-07 62 8.17 0.21 0.41 

16432 1926069 5597417 12.0 1995-11-07 2000-06-28 25,140 9.96 0.25 0.37 

16550 1935285 5603381 1.5 2016-10-11 2017-01-26 11 7.04 0.18 0.81 

16551 1935277 5603376 3.0 2016-10-07 2017-01-26 29,818 7.86 0.22 0.50 

16552 1935274 5603375 4.1 2016-10-07 2017-01-26 13,431 7.74 0.20 0.45 

16553 1935220 5603429 1.5 2016-10-07 2017-01-26 13,428 8.48 0.03 0.07 

16554 1935220 5603427 3.0 2016-10-07 2017-01-26 13,426 8.23 0.16 0.37 

16555 1935222 5603427 4.0 2016-10-13 2017-01-26 10 7.01 0.64 2.88 

16556 1935112 5603397 3.0 2016-10-07 2017-01-26 47,081 8.53 0.18 0.40 

16557 1935111 5603391 4.1 2016-10-07 2017-01-26 13,452 7.69 0.17 0.40 

16611 1934764 5604127 18.0 2017-08-08 2021-07-07 97,442 7.97 0.39 0.58 

16641 1930387 5606036 45.0 2017-08-08 2021-07-07 47 11.59 0.62 1.85 

16729 1926320 5609177 27.0 2018-02-01 2021-07-07 86,484 13.78 0.49 0.74 

16758 1926750 5599330 26.5 2018-02-22 2021-07-07 108,803 12.03 1.39 2.08 

16772 1920804 5607186 29.7 2018-05-01 2021-07-07 102,956 18.52 0.65 0.97 

16965 1938727 5609085 34.0 2020-03-05 2021-07-07 19 6.38 0.53 1.60 
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Table A2.2 Stream-flow observations used in history-matching. 

Site Easting NZTM 
(m) 

Northing NZTM 
(m) 

Target Value 
(m3/d) [m3/s] 

Standard Deviation 
(m3/d) 

Karamu at the floodgates 1932689 5609195 172,800.0 [2.00] 34,560.0 

Ngaruroro at Chesterhope 1932539 5609866 2,073,600.0 [24.00] 414,720.0 

Ngaruroro at State Highway 50 1922945 5611244 1,710,720.0 [19.80] 342,144.0 

Raupare at Ormond 1929836 5609665 54,432.0 [0.63] 10,886.4 

Tukituki at Blackbridge 1937610 5608740 1,840,320.0 [21.30] 368,064.0 

Tutaekuriwaimate at Goods 1928467 5613386 198,720.0 [2.30] 39,744.0 

Table A2.3 Surface-water–groundwater-exchange observations used in history-matching. 

Reach River Loss Target 
(m3/d) [m3/s] 

Standard Deviation 
(m3/d) 

Ngaruroro Roys Hill – Fernhill 367,200.0 [4.25] 73,440.0 

Ngaruroro D/S Fernhill 10,368.0 [0.12] 2073.6 

Ngaruroro loss combined 388,800.0 [4.50] 77,760.0 

Paritua Upstream of Bridge Pā 6,912.0 [0.08] 1382.4 

Tukituki River Road – Tennant Road 67,392.0 [0.78] 13,478.4 

Tutaekuri Hakowi – Silverford  69,120.0 [0.8] 13,824.0 

 
Figure A2.1 Water-level observations across all layers. 
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Figure A2.2 Stream-flow observations. 

 
Figure A2.3 Surface-water–groundwater-exchange estimates. 



 Confidential 2025 

 

GNS Science Consultancy Report 2025/06 89 
 

APPENDIX 3   Simulated Output versus Observations 

A3.1 skytem-k and skytem-k-precond Summaries 

 
Figure A3.1 Summary of history-matching results for the skytem-k model. Left-hand plots (A, C, E, G) are 

simulated values versus observed values. Right-hand plots (B, D, F, H) are residual values (simulated 
– observed) for each observed value. Grey bars represent prior simulated values. Blue bars are 
posterior simulated values with respect to the same observations. Red bars are the observed values 
with the inclusion of ‘observation noise’. The top two plots (A and B) relate to inequality observations 
that surface-layer heads should always be below 350 m above sea level, which is a pragmatic 
observation to try to reduce spurious head spikes in the ensembles. 
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Figure A3.2 Summary of model history-matching for the skytem-k-precond model. Left-hand plots (A, C, E, G) 

are simulated values versus observed values. Right-hand plots (B, D, F, H) are residual values 
(simulated – observed) for each observed value. Grey bars represent prior simulated values. 
Blue bars are posterior simulated values with respect to the same observations. Red bars are 
the observed values with the inclusion of ‘observation noise’. The top two plots (A and B) relate to 
inequality observations that surface-layer heads should always be below 350 m above sea level, 
which is a pragmatic observation to try to reduce spurious head spikes in the ensembles. 
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A3.2 Individual Observation Fits 

Note that, for comparison, individual observation fit plots for the geo model are provided in Hemmings 
et al. (in prep.). 

A3.2.1 skytem-k 

A3.2.1.1 Levels 
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A3.2.1.2 Stream Flows 
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A3.2.1.3 Surface-Water–Groundwater Exchange 
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A3.2.2 skytem-k-precond 

A3.2.2.1 Levels 
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A3.2.2.2 Stream Flows 
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A3.2.2.3 Surface-Water–Groundwater Exchange 
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A3.2.3 skytem-lays 

A3.2.3.1 Levels 
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A3.2.3.2 Stream Flows 
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A3.2.3.3 Surface-Water–Groundwater Exchange 
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A3.2.4 skytem-lay-precond 

A3.2.4.1 Levels 
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A3.2.4.2 Stream Flows 
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A3.2.4.3 Surface-Water–Groundwater Exchange 
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APPENDIX 4   Predictive Results 

A4.1 Mapped Simulated Outputs 

  

Figure A4.1 geo model prior ensemble median (upper left), mean (upper right) and standard deviation (right) for all water-level 
simulated outputs. 
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Figure A4.2 geo model posterior ensemble median (upper left), mean (upper right) and standard deviation (right) for all 
water-level simulated outputs. 
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Figure A4.3 skytem-lays model prior ensemble median (upper left), mean (upper right) and standard deviation (right) for all 
water-level simulated outputs. 
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Figure A4.4 skytem-lays model posterior ensemble median (upper left), mean (upper right) and standard deviation (right) for 
all water-level simulated outputs. 
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Figure A4.5 skytem-lays-pc model prior ensemble median (upper left), mean (upper right) and standard deviation (right) for 
all water-level simulated outputs. 
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Figure A4.6 skytem-lays-pc model posterior ensemble median (upper left), mean (upper right) and standard deviation (right) 
for all water-level simulated outputs. 
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Figure A4.7 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower right) for the skytem-lays model prior, relative to the geo prior, for all water-level 

simulated outputs. Note: crosses relate to well locations that are present in a different model layer in the geo model. Colour scales are clipped to ±10 m for difference plots and +1000% for standard deviation percent difference. 
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Figure A4.8 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower right) for the skytem-lays model posterior, relative to the geo posterior, for all water-

level simulated outputs. Note: crosses relate to well locations that are present in a different model layer in the geo model. Colour scales are clipped to ±10 m for difference plots and +1000% for standard deviation percent difference. 
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Figure A4.9 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower right) for the skytem-lays-pc model prior, relative to the skytem-lays prior, for all 

water-level simulated outputs. Note: colour scales are clipped to ±10 m for difference plots. 
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Figure A4.10 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower right) for the skytem-lays-pc model posterior, relative to the skytem-lays posterior, 

for all water-level simulated outputs. Note: colour scales are clipped to ±10 m for difference plots. 
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Figure A4.11 geo model prior ensemble median (upper left), mean (upper right) 
and standard deviation (lower right) for all Surface Flow Routing 
(SFR)-exchange simulated outputs. 

 



Confidential 2025  

 

258 GNS Science Consultancy Report 2025/06 
 

  

Figure A4.12 geo model posterior ensemble median (upper left), mean (upper right) 
and standard deviation (lower right) for all SFR-exchange simulated 
outputs. 
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Figure A4.13 skytem-lays model prior ensemble median (upper left), mean (upper 
right) and standard deviation (lower right) for all SFR-exchange 
simulated outputs. 
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Figure A4.14 skytem-lays model posterior ensemble median (upper left), mean 
(upper right) and standard deviation (lower right) for all SFR-exchange 
simulated outputs. Note: standard deviation colour scale is one-sided 
(white to red). 
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Figure A4.15 skytem-lays-pc model prior ensemble median (upper left), mean 
(upper right) and standard deviation (lower right) for all SFR-exchange 
simulated outputs. Note: standard deviation colour scale is one-sided 
(white to red). 
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Figure A4.16 skytem-lays-pc model posterior ensemble median (upper left), mean 
(upper right) and standard deviation (lower right) for all SFR-exchange 
simulated outputs. Note: standard deviation colour scale is one-sided 
(white to red). 
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Figure A4.17 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower 

right) for the skytem-lays model prior, relative to the geo prior, for all SFR-exchange simulated outputs. Note: standard deviation percent difference colour 
scale is clipped at +1000%. 
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Figure A4.18 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower 

right) for the skytem-lays model posterior, relative to the geo posterior, for all SFR-exchange simulated outputs. Note: standard deviation percent difference 
colour scale is clipped at +1000%. 
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Figure A4.19 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference 

(lower right) for the skytem-lays-pc model prior, relative to the skytem-lays prior, for all SFR-exchange simulated outputs. Note: standard deviation percent 
difference colour scale is clipped at +1000%. 
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Figure A4.20 Difference between ensemble median (upper left), mean (upper right), standard deviation (lower left) and standard deviation percentage difference (lower 

right) for the skytem-lays-pc model posterior, relative to the skytem-lays posterior, for all SFR-exchange simulated outputs. Note: standard deviation percent 
difference colour scale is clipped at +1000%. 
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Figure A4.21 geo model prior ensemble median (upper left), mean (upper right) 
and standard deviation (lower right) for all SFR in-stream flow 
simulated outputs. 
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Figure A4.22 geo model posterior ensemble median (upper left), mean (upper 
right) and standard deviation (lower right) for all SFR in-stream flow 
simulated outputs. 
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Figure A4.23 skytem-lays model prior ensemble median (upper left), mean (upper 
right) and standard deviation (lower right) for all SFR in-stream flow 
simulated outputs. 
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Figure A4.24 skytem-lays model posterior ensemble median (upper left), mean 
(upper right) and standard deviation (lower right) for all SFR in-stream 
flow simulated outputs. 
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Figure A4.25 skytem-lays-pc model prior ensemble median (upper left), mean 
(upper right) and standard deviation (lower right) for all SFR in-stream 
flow simulated outputs. 
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Figure A4.26 skytem-lays-pc model posterior ensemble median (upper left), 
mean (upper right) and standard deviation (lower right) for all SFR 
in-stream flow simulated outputs. 
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Figure A4.27 Difference (left) and percentage difference (right) between ensemble median (top), mean (middle) and standard deviation (bottom) for the skytem-lays model 

prior, relative to the geo prior, for SFR in-stream flow simulated outputs. Note: percent difference colour scales are clipped at +1000%. 
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Figure A4.28 Difference (left) and percentage difference (right) between ensemble median (top), mean (middle) and standard deviation (bottom) for the skytem-lays model 

posterior, relative to the geo posterior, for SFR in-stream flow simulated outputs. Note: percent difference colour scales are clipped at +1000%. 
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Figure A4.29 Difference (left) and percentage difference (right) between ensemble median (top), mean (middle) and standard deviation (bottom) for the skytem-lays-pc 

model prior, relative to the skytem-lays prior, for SFR in-stream flow simulated outputs. Note: percent difference colour scales are clipped at +1000%. 
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Figure A4.30 Difference (left) and percentage difference (right) between ensemble median (top), mean (middle) and standard deviation (bottom) for the skytem-lays-pc 

model posterior, relative to the skytem-lays posterior, for SFR in-stream flow simulated outputs. Note: percent difference colour scales are clipped at +1000%. 
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A4.2 skytem-lays Models 

A4.2.1 Wet Scenario 
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A4.2.2 20% Pumping Increase Scenario 
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A4.2.3 20% Pumping Decrease Scenario 
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A4.3 skytem-k Models 

A4.3.1 Dry Scenario 
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A4.3.2 Wet Scenario 
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A4.3.3 20% Increase in Pumping 
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A4.3.4 20% Decrease in Pumping 
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