Greater Heretaunga and Ahuriri Land and Water Management Collaborative Stakeholder (TANK) Group

Meeting 23: 20 September 2016

Karakia

Agenda

10:00am	Welcome, karakia, notices, meeting record
10:15am	Update on HNorth Water Contamination and its relevance to TANK
10.30am	SedNET modelling
11.45pm	Sediment and erosion mitigation options and strategies
12:30pm	LUNCH
1:15pm	Waitangi Estuary – state and trends; and impact on values
2:30pm	Translating Mana Whenua Values to Attributes for the Ngaruroro Awa
3:30pm	COFFEE BREAK
3:40pm	Updates from Working Groups
3:45pm	Agenda for next meeting
3:50pm	Revised Work Programme
~4:00pm	FINISH

Meeting objectives

- Understand estuary state in relation to freshwater inputs
- Receive information about modelled land use effects on water quality – pastoral catchments and sources of;
 - Sediment Sednet
 - Phosphorus Overseer
- 3. Discuss sediment and erosion mitigation options and strategies
- 4. Build on the values/attributes work of the TANK Group by receiving the findings of the Translating mana whenua values to attributes for the Ngaruroro awa engagement project

Action points

ID	Action item	Person responsible	Status
22.1	Include amenity value for the "All surface water" values.	Mary-Anne	Completed
22.2	Further refinement of values information to come as Maori values and attributes work considered alongside TANK Group work to date.		Being presented today (meeting #23)
22.3	Project team updating work programme to ensure work programme sufficiently detailed.		Being presented today (meeting #23)
22.4	There is a need for further discussion to refine the Group understanding and position in relation to swimming water quality and related mahinga kai management		To be discussed at later meeting/s
22.5	Check Cawthron report in relation to clarity and turbidity needs of native fish	Nathan Burkpile/ Mary-Anne	In progress
22.6	HBRC will organise an opportunity for TANK members to go on a fieldtrip.		Options being discussed today

Sediment modelling in the TANK catchments

The SedNet model

- Comprised of several sub models
- Models takes into account;
 - > Land slope
 - Land cover
 - River flows
 - River bank erosion
 - Sediment deposition on river beds & banks
- Calibrated with 'real' data

What can the model do?

SedNet modelling can help:

- Identify sources of sediment
- Calculate area of land vulnerable to sediment generation?
- How much sediment is coming from these areas?
- Calculate how much comes from catchments, sub catchments and even farms
- Predict sediment particle size
- Predict what happens when stock are excluded

Tutaekuri catchment - load v yield

Tutaekuri Sub-catchments	Sediment loss (tonnes)
Mangaone	171,884
Tutaekuri Corridor	71,635
Upper Tutaekuri	51,569
Mangatutu	50,554
Waikonini	17,578
Otakarara	9,072
Tutaekuri Catchment Total	
sediment loss (Tonnes / year)	372,292

Total yield (t/km²/yr)

Sub-catchment	Yield (t/km2/yr)	
Tutaekuri Corridor	547	
Mangaone	507	
Mangatutu	418	
Upper Tutaekuri	383	
Waikonini	301	
Otakarara	192	
Average yield	450	

Ahuriri catchment - load v yield

Ahuriri Sub-catchments	Sediment loss (tonnes)
Ahuriri Lagoon Tributaries	45,379
Taipo	4,011
Napier South	-474
Napier Drains	-3,436
Ahuriri Catchment Total sediment loss	
(Tonnes 🖊 year)	45,480

Sub-catchment	Yield (t/km2/yr)	
Ahuriri Lagoon Tributaries	509	
Taipo	318	
Napier South	-43	
Napier Drains	-105	
Average yield	310	

Ngaruroro catchment - load v yield Total load (t/yr) **Upper Ngaruro**ro Taruarau≷ Omahaki **Otamajiri** Ohiwia Kikowhero-Tutaekuri-Waimate

Ngaruroro Corridor Waitio

Maraekakaho

Poporangi Mangatahi

	Sediment loss
Ngaruroro Sub-catchments	(tonnes)
Upper Ngaruroro	229,620
Taruarau	187,585
Ngaruroro Corridor	80,099
Poporangi	67,796
Ohiwia	39,114
Waitio	24,283
Omahaki	21,289
Otamauri	20,646
Mangatahi	14,855
Kikowhero	9,824
Maraekakaho	8,497
Tutaekuri-Waimate	632
Ngaruroro Catchment Total sediment	
loss (Tonnes /year)	704,240

Total yield (t/km²/yr)

Karamu catchment - load v yield

	Sediment loss
Karamu Sub-catchments	(tonnes)
Paritua-Karewarewa	27,293
Awanui	5,807
Poukawa	4,748
Havelock North Streams	3,328
Karamu-Clive Corridor	1,058
Mangateretere	-148
Louisa	-238
Irongate-Southland	-521
Muddy Creek	-1,726
Hastings Streams	-2,398
Raupare	-4,201
Karamu Catchment Total sediment	
loss (Tonnes ⊤year)	33,001

Stock access in the TANK area

Current fencing tonnes/Year

< 10

> 10 - 25

> 25 - 50

> 50 - 100

> 100 - 250

> 250 - 500

> 500

Current estimated sediment loss from TANK through river bank erosion;

222,425 tonnes per year

Reduction of sediment with increasing stock exclusion

With 100% fencing tonnes/Year

< 10

> 10 - 25

> 25 - 50

---- > 50 - 100

---- > 100 - 250

----- > 250 - 500

Estimated sediment loss from TANK through river bank erosion with 100% increase in fencing;

50,916 tonnes per year

77% reduction from current

Breakdown of erosion types in TANK

Linking sediment and phosphorus

- Binds strongly to soil particles/sediment
- Phosphorus is usually found as phosphate under normal environmental conditions
- Can be released under certain environmental conditions e.g. low oxygen environments
- Causes algal blooms and other plant growth in rivers.

Modelled Phosphorus loss across the TANK Catchments

TANK Catchment Modelled Total Phosphorus Loss (kg/ha/yr)

< 0.25	1.26 - 1.50	2.51 - 2.75	3.76 - 4.00	5.01 - 5.25
0.26 - 0.50	1.51 - 1.75	2.76 - 3.00	4.01 - 4.25	5.26 - 5.50
0.51 - 0.75	1.76 - 2.00	3.01 - 3.25	4.26 - 4.50	5.51 - 5.75
0.76 - 1.00	2.01 - 2.25	3.26 - 3.50	4.51 - 4.75	5.76 - 6.00
1.01 - 1.25	2.26 - 2.50	3.51 - 3.75	4.76 - 5.00	6.01 <

Erosion

- 1. Intro to erosion
- 2. HB context
- 3. Types of erosion and mitigation
- 4. Online tool

Erosion 101

- Natural process accelerated
- Highly influenced by geology (type & extent)
- Damage to infrastructure and environment
- Long term loss of production and natural capital

Natural Disasters or Normal events

Hawke's Bay

- 55 of the last 100 years had at least 1 rain event >100mm
- 9 years had events of >200mm
- 53 storms similar to Bola in last 7200yrs, 7 even larger.
- 1400 storms in sediment record
- Storm frequency 1 in 5 yrs for all storms. 1 in 53 years for large storms

Conversion of forest to scrub and fern Increased erosion by 60%

Conversion to pasture Increased erosion 800-1700%. (8-17X)

Forestry

- Pakuratahi Land use study
- 12 years paired catchment study
- Pasture had 3-4 X sediment loss of forested catchment
- After harvest 2-3 X sediment loss compared with grass
- 2-3 years after harvest, back to pre-harvest levels
- Over 12 years total yield from catchment was 1.5 x more on pasture

More vegetation = less erosion

Slips and slumps

Gully (degrade)

Gullies (tunnel)

Streambank erosion

Earthflow

Sheet

Wind

Stock

Other

What do we do?

- More vegetation
- Less time or area with exposed soil
- Some structures

- Fencing costs vary \$3, \$18-20, \$36/m (deer)
- Space planted poles \$800/ha at 30-50 trees/ha
- Effectiveness 78-95% reduction in slips compared with pasture

Land Use Capability

Its not just for calculating nitrogen leaching allowances...

An on line tool to help with soil conservation recommendations

http://maps.hbrc.govt.nz/IntraMaps/MapControls/RegionalLUCTool/index.html

Using SedNet in decision making

How else might SedNet inform the Group?

Waitangi Estuary

The Waitangi Estuary

The Waitangi Estuary Values

Habitat/indigenous biodiversity

Mauri, Life supporting capacity

Wetland values

Food gathering – Mahinga kai

Human health and wellbeing

Tourism

Fishing, Eeling, Whitebaiting

Swimming and recreation

Sediment Water Trophic Pathogen Habitats quality quality state Extent and Phyto-Water Muddiness E. coli plankton diversity of clarity (Biomass) habitats Macro Deposition **Species** Enterococci Nitrogen algae diversity rate (Cover) Phos-Sediment -Macrophorus phytes anoxic? Toxicants -Oxygen Seagrass metals etc. Suspended **Nutrients** sediment

Nutrients

REGIONAL COUNCIL

Oxygen

Suspended sediment

Suspended sediment

Phosphorus

Oxygen

Suspended sediment

Sediment sources

Total sediment loss of 1.1 million tonnes per year

Deposited sediment

Fine sediment = changes in ecology

Sediments and contaminants

Sediment fate

Nearshore \longrightarrow gradually moves \longrightarrow Offshore

Recreational usage

Faecal source tracking:

- Bird and vegetation
- Some ruminant

Result unclear!

Very poor

Food gathering

Summary

- A muddy estuary is not natural
- Turbid water and high suspended sediment concentrations are not natural
- Sediment loads are causing issues
- Sediments are intrinsically linked to nutrients; toxicants and pathogens.
- Need to consider the estuary when thinking about management of the freshwater environment

Translating Mana Whenua Values to Attributes for the Ngaruroro Awa

Verbal updates from Working Groups

- Engagement
 - Pastoral hill country farmer meetings
- Economic Assessments
 - RfP
- Stormwater
- Wetlands/Lakes
- Mana whenua

Agenda for Meeting 24

- Groundwater values and attribute states
- Reviewing attribute states in light of mana whenua values to attributes work
- Risks and opportunities
- Initial mapping of management areas for Water Quality
- Develop scenarios for testing and working on management options

Revised work programme

- Updated to
 - reflect science programme
 - economic assessment project outputs
 - Include further detail about meeting content

Meeting 23	Estuary state and trends – and impact on values Understanding sediment inputs and management options Presenting findings - tangata whenua values and attribute state project	
Meeting 24	Groundwater values and attribute states Report back on tangata whenua project findings Risk and opportunities report back from EAWG Develop scenarios for testing and work on management options – quality and quantity Ahuriri	2 November 2016
Meeting 25	Karamū Management Report on Heretaunga Source Model Continuing Waitangi Estuary state/trends information — nutrient load limits Confirm Karamu values/attributes/attributes states Scenarios for modelling — further from work on 2 nd November	
Meeting 26	Preliminary report from Stormwater group Part 1 and 2 economic assessment report back and development of second round of mitigation options. Possible establishment of Water Augmentation Group	9 February 2017 64

Meeting 27	Ahuriri reporting Report on nutrient loads to estuaries TANK quality and quantity modelling – report on Source model	22 2017	March
Meeting 28	Part 1 and 2 economic assessment reporting – round 2 Final report from stormwater group Final report from Wetland Group	3 May	2017
Meeting 29	Quality and quantity alignment Review all decisions for Tūtaekuri and Ngaruroro and Karamu Costs/benefits and implications assessments Part 4 of economic assessment Monitoring plan — report on current and identify gaps, propose solutions How does the BBN look?		e 2017
Meeting 30 and 31	Economic assessment outputs parts 3 and 4 Review all decisions for Ahuriri Allocation options, Other methods, Implementation plan –commence preparation alongside draft plan change	•	v 2017 tember
Meeting 32	Plan drafting	18 C	ctober
Meeting 33		22 Nov	/

Closing Karakia

Nau mai rā

Te mutu ngā o tatou hui

Kei te tumanako

I runga te rangimarie

I a tatou katoa

Kia pai to koutou haere

Mauriora kia tatou katoa

Āmine

